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Abstract 
This manual discusses the use of indicators for assessing the state of a fish stock.  The 
indicators envisaged are estimated from trawl surveys, or trawl-supplemented surveys such 
as egg and acoustic surveys, in which catchability is maintained constant so far as practically 
possible.  A preliminary section considers factors that determine the appropriateness of a 
survey for each species and indicator, and makes suggestions for statistical estimators for 
quantitative and descriptive indicators.  A widely applicable selection of biological and 
spatial indicators is then documented in a standardised format that includes references to 
examples of their use and modifications.  The biological indicators include those relating to 
quantity of fish, size, and reproduction.  The spatial indicators characterise the geographic 
distribution of a stock and make allowance for low or zero densities of fish at some stations.  
The final section of the manual presents several presentational and statistical methods for 
assessing and interpreting trends in indicators.  A stock simulation model is described that 
may assist with determination of reference points for biological indicators.  Since indicators 
tend to be highly specific and normally many would be used to assess the state of a stock, 
multivariate methods form an important part of this section.  Indicators offer valuable 
biological and geographic information for supplementing existing model-based stock 
assessments.  They are also likely to form an important component of an ecosystem approach 
to fishery management, or they could be used pragmatically to tune harvest control rules in a 
form of adaptive management. 
 

Keywords: 
fish stock assessment; trawl survey; fish survey; biological indicator; spatial indicator; stock 
status;  
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1. Introduction 
Indices are measurable quantities that can be used to characterise a fish stock, for example, 
the mean length of the fish or the centre of gravity of its geographic distribution. When 
variation in a particular index relates to a process in the stock that one wants to follow, the 
index becomes an indicator of that process. This manual discusses indicators that are 
estimated from consistent time-series of results from scientific surveys conducted by research 
vessels (Anonymous 2004), or by other fishing vessels being operated purely for the ends of 
a survey and not for the pursuit of catches for commercial gain (since that goal would almost 
certainly cause bias).  The surveys envisaged use a standardised trawl (Anonymous 2006) 
with small-mesh codends such that selectivity can be assumed to be reasonably constant for 
all fish larger than the selection range of the codend mesh.  The trawling may only have a 
supporting role in the survey, for example for acoustic or egg surveys.  For surveys using 
other catching or sampling methods, the applicability or otherwise of each indicator should 
be carefully considered in relation to selectivity.  The fish species envisaged breed and 
recruit annually; some of the indicators may not be suitable for species that do otherwise, e.g. 
tropical species.  A single species is assumed unless stated. 
 
The relevance of indicators to the management of fisheries has become more widely 
acknowledged in recent years. In Northern Europe at least, the scientific community advising 
on fisheries management has mostly relied on quite complicated models to assess the state of 
fish resources and make recommendations. This approach entails significant costs in terms of 
data volume and quality, and of expertise as well, and is only affordable for the top-valued 
species and fisheries. Nowadays, other species that were of secondary interest in the past 
have become the primary targets of fishers, and scientific advice on the conditions for their 
sustainable exploitation is also sought by managers. In most instances, however, the rich data 
bases required for the conventional assessment models are lacking; other routes have to be 
considered, such as indicator-based methods. Moreover, States have embraced the 
"ecosystems approach to fisheries management" which, however defined, basically implies 
that the interactions between ecosystems' states or processes and fisheries have to be 
accounted for when decisions are made for fisheries. There is a broad consensus within the 
scientific community that building detailed quantitative models, continuing the traditional 
fishery science approach, to advise ecosystems-based management is simply not an option 
given the gaps in knowledge and the huge cost of getting the appropriate data. The alternative 
route is to identify and monitor a suite of indicators that reflect the state of, and possibly the 
human pressure on, the marine systems; management action is then advised based on 
observed changes in the indicators. Considerable scientific efforts are underway concerning 
indicators, as evidenced by a burgeoning literature. 
 
There are at least two potential difficulties in this context.  Firstly, like other environmental 
issues, fisheries issues are highly controversial. It can be expected that when systems of 
indicators – or indicator-based assessments – eventually get included in the management 
decision framework, they will be exposed to strong reactions, perhaps more so than 
traditional fish stock assessments, if only because they will be novel. A prime concern, 
therefore, is that the process to infer the state of fish stock, ecosystems, etc. from indicators 
should be formalised, in the sense of being rational, objective, defensible, and replicable by 
others; it should be amenable to non-ambiguous descriptions that are intelligible to 
stakeholders and managers. 
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Secondly, marine ecosystems and fish stocks are notoriously subject to high variability. Yet, 
it is quite likely that several indicators will be based on relatively limited samples (in terms 
of size, frequency, seasonal or area coverage). This will be particularly true for indicators 
collected during scientific sea surveys, which are already an important recourse for 
monitoring fish stocks when commercial fishery data are lacking or deteriorating (the topic 
dealt with by the FISBOAT project), and will be the prime – or even the sole –  source for 
several ecosystems indicators.  Surveys mobilise costly vessels and typically involve a 
limited number of stations and samples of moderate size, thus survey indicators often have 
large CVs. In any case, the signal-to-noise ratio is likely to be low. Procedures therefore have 
to be found to avoid casting measurement noise straight into the advice, and triggering undue 
action with all the political fuss that may follow. 
 
For the present, indicators could be used to supplement existing methods of model-based, 
single-species stock assessment  and management (Demaré 2006). This would incorporate 
some additional biology into what is otherwise mainly a computational exercise.  In due 
course, indicators are likely to form a fundamental part of an ‘ecosystem approach to 
fisheries’ (EAF) (Garcia and Cochrane 2005), Jennings (2005), Cury and Christensen (2005).  
Indicators might also be used pragmatically to inform a management system based on harvest 
or effort control rules negotiated relatively from year to year between management and 
industry.  A suite of well-chosen indicators are envisaged to tune such a system so that, after 
an initial period of trial and error, indicators relevant to the health of the stock respond 
somewhat predictably to management actions.  This would be a form of adaptive 
management (Walters 1986).     
 
This manual is intended as a contribution to the necessary formal structure for using 
indicators to assist the management of fisheries.  A preliminary, general section, section 2, 
discusses the appropriateness of the surveys used, and some possible estimators that can give 
different results from the same survey.  Section 3 summarises a small selection of potentially 
useful indicators of the biological state of a stock of fish.  Section 4 considers indicators of 
the spatial state of a fish stock, most of which allow for the occurrence of low or zero 
densities of a species of fish at some stations, making them very generally applicable. The 
last section, section 5, presents methods to assist with the interpretion of time-series of 
different indicators, singly and in combination. This aspect is important because indicators 
tend to be highly specific, so that use of many is often necessary to gain a full picture of a  
stock (Rice and Rochet 2005).  Additionally, the interpretation of indicator series often 
depends more on their trends up or down over time than on their absolute values (Jennings 
and Dulvy 2005; Trenkel et al. 2007). The general problem is how to assemble all the 
different results in a way that is informative and suitable for justifying decisions about 
management of the fishery. 
 
Table 1.1 is a list of the state indicators described in this manual, the marine environmental 
processes and population characteristics that they relate to, and the primary authors from the 
FISBOAT project in each case. The indicators are described briefly using a standardised 
format; each relates to a specific biological or spatial characteristic of the stock, or of 
selected age or length classes within it.  In several cases, the indicator described is one 
example from a suite of related indicators; where possible, references are provided to allow 
further information to be followed up.  The manual includes but is not limited to indicators 
and methods trialled during the FISBOAT project, 2005 to 2007.  The methods trialled were 
limited to those applicable to most of the project case studies with the available data and 
within the available time.  The FISBOAT project also considered non-indicator based 
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methods of stock assessment using surveys; these methods are described in a related project 
manual entitled 'Review of fishery-independent assessment methods' prepared by Mesnil 
(ICES CM2007/O:04). 
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Table 1.1  List of the indicators documented in this manual, the marine environmental processes and population 
characteristics that they are thought to relate to, and the primary authors of text. 

 
Indicator and 
abbreviation  

Processes affecting Population 
characteristics 

Contributors 

Intrinsic population 
growth rate, r 
 

Fishing, natural mortality, 
reproduction 

Numerical abundance 
summed over all ages 

Trenkel 

Total mortality, Z Fishing, natural mortality, 
migrations with age into 
or out of survey area 

Rate of dying, 
migrations related to age 

Rochet, Trenkel, Cotter 

Spawning stock in 
number, SSN 
 

Maturation, fishing, 
natural mortality, nutrition 

Abundance of potentially 
breeding fish,  
sustainability of the stock 

Mesnil, Uriarte, 
Witthames 

Length statistics, Lbar, 
L25, L50, L75 

Recruitment, growth, 
fishing, natural mortality 
 

Growth, length frequency 
distribution, recruitment 

Trenkel, Mesnil, Cotter 

Total weight caught, W Fishing, natural mortality, 
growth, feeding 
 

Numerical abundance, age 
composition, growth 

Cotter 

Condition, C feeding, growth Nutritional status of 
individuals, reproductive 
fitness 

Cotter, Witthames 

Gonadosomatic index, 
GSI 

feeding, maturation 
 
 

Nutritional status, 
reproductive fitness 

Cotter, Witthames 

Length and age at 
maturity, LaM50, AaM50 

maturation, fishing 
mortality, evolutionary 
selection 

Size and age of potentially 
breeding fish. 

Rochet, Trenkel, 
Witthames, Cotter 

N-at-length, N-at-age, 
NaL, NaA 

Recruitment, growth, 
fishing, natural mortality 
  

Length and age frequency 
distribution 

Cotter 

Centre of gravity, CG Migrations, climate 
change, fishing, 
population size 

geographic location of the 
whole population or of 
concentrations of fish 

Woillez, Rivoirard, 
Petitgas 

Inertia, I Dispersal, environmental 
change, migrations 

Changing population size, 
migrations, climate and 
environmental changes 

Woillez, Rivoirard, 
Petitgas 

Anisotropy, An, 
Isotropy, Is 

Depth, currents, proximity 
to shore 

Alignment of the 
population in relation to 
environmental gradients 

Woillez, Rivoirard, 
Petitgas 

Global index of 
collocation, GIC 

Competition, genetic 
differences, dispersal 

Geographical overlap of 
two populations 

Woillez, Rivoirard, 
Petitgas 

Number of spatial patches, 
NOP 

Dispersal, common 
attractants, lack of mixing 

Patterns of movement, 
foraging strategies, 
population size 

Woillez, Rivoirard, 
Petitgas 

Positive area, PA Dispersal without regard 
to variations of abundance 

Population size, habitat 
preferences, food 
availability 

Woillez, Rivoirard, 
Petitgas 

Spreading area, SA 
 

Dispersal with regard to 
variations of abundance 

Population size, habitat 
preferences, food 
availability 

Woillez, Rivoirard, 
Petitgas 

Equivalent area, EA Dispersal assuming 
uniform abundance 

Population size Woillez, Rivoirard, 
Petitgas 

Microstructure index, MI Small-scale variability of 
habitat, abundance 

Relationship of population 
to environment 

Woillez, Rivoirard, 
Petitgas 
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2. Surveys and estimation 

2.1 Introduction 
This preliminary section is intended to be general to the use and interpretation of indicators 
from fish surveys.  In section 2.2, Trenkel warns of dangers arising from placing excessive 
reliance on survey results for the estimation of indicators without first carefully considering 
whether the survey will in fact provide appropriate data for the species and indicators of 
interest.   In section 2.3, Cotter discusses alternative estimators that can give widely differing 
results for an indicator using the same survey data. 
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2.2 Potential limitations of survey data as the unique 
source of information for stock assessment and 
management 
V. Trenkel 
IFREMER, Nantes, France 

Introduction 
There are several issues that need to be considered when using survey data as the unique 
source for carrying out stock assessments and providing management recommendations. The 
main issues leading to bias or uncertainty regarding evolution of the stock are  

1. the surveyed area does not encompass the stock area; 
2. the size/age classes sampled are not representative of the stock; 
3. variation in survey catchability. 

Survey area ≠ stock area  
There are various reasons why survey areas might not encompass stock areas, in addition to 
the problem of stock boundaries not being well known, or survey areas varying between 
years. The simplest reason is that part of the stock, or certain age classes, are outside the 
survey area. No single survey will cover the whole stock area for geographically wide spread 
species such as northern hake. For other species the problem might be that certain age groups 
are too deep to be caught by the survey gear, or too shallow for the survey vessel to access 
them, or they are not accessible to the survey gear because their habitat is for example not 
trawlable. Anchovy in the Bay of Biscay is an example of a species with a variable 
proportion of recruits too close to the coast and thus in too shallow water for the survey 
vessel being used. The visible effect of this is that numbers at age 2 are higher than numbers 
at age 1 in the previous year (Fig 2.2.1a). Similarly for cod in the North Sea IBTS survey as 
shown by the negative mortality rates for age 1 in many years (Fig 2.2.1b). The negative Z 
for cod age 5 are probably an effect of small sample sizes. The same effect can of course be 
caused by gear selectivity so that in each case it is necessary to find the most plausible 
explanation. 
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Figure 2.2.1. Total mortality estimates Z by age and year derived from survey numbers-at-age. Z estimates for 
age a in year t refers to the total mortality between age a in t and age a+1 in t+1. a) anchovy in Bay of Biscay; b) 

cod in North Sea. 

 
 
In addition to the above issues, stocks might move out of, or into the survey area in response 
to changing environmental conditions. Diel migrations or other activity patterns can also lead 
to variability in availability to the survey gear. 

Size classes sampled not representative of stock 
Many scientific surveys have been designed as young fish surveys. For example, what is 
called today the International Bottom Trawl survey (IBTS) started off as the International 
Young Herring Survey (IYHS) in the North Sea, then became the International Young Fish 
Survey (IYFS) before finally obtaining its current name. The change in objectives reflected in 
the varying names did not imply any change in design, rather a modification of the list of 
species for which information was collected. Hence in response to the initial objectives, a 
sampling trawl designed for catching young fish is still used today (GOV 36/47). The time of 
year of the survey was decided similarly. The initial survey took place in the first quarter as 
herring juveniles are then available. Currently a third quarter survey is also carried out.  
 
When the IBTS survey was extended to the Bay of Biscay and Celtic Sea (French EVHOE 
survey), the same GOV trawl was adopted despite the fact that substrates are often more 
difficult for trawling and the GOV is more suited for soft bottoms. The GOV was slightly 
adapted by removing the exocet Kite and replacing it by 6 additional floats. As the main 
target species are hake, megrim and monkfish, the survey is carried out in the fourth quarter 
when the recruits of those species become accessible. 
 
The consequence of designing surveys to target recruits is that there can be the problem of 
exploited size classes not being well represented in the survey catches. This can be due to the 
survey gear being used (selectivity), the vessel speed, or of course an area mismatch dealt 
with above. 
 
As an example, consider the length distribution of hake in landings and in the EVHOE 
autumn groundfish survey (Fig 2.2.2). In the survey the bulk of individuals is smaller than 20 
cm while in the landings the distribution is rather flat between 30 and 60 cm. Note that the 
legal landing size is 27 cm. The survey catches very few individuals in the size range 
targeted by the fishery. Thus, for northern hake, it seems that the EVHOE survey might be 
suitable to provide recruitment (age 0) and perhaps age 1 estimates, but it is unlikely that 
variations in total stock abundance or other indices relating to the adults will be captured 
reliably.  
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Figure 2.2.2. Length distribution of hake landings for the northern stock (left) and hake caught in the autumn 
groundfish survey in the Bay of Biscay and Celtic Sea (right).  

 

Variations in survey catchability 
A range of factors can make survey catchability vary between hauls and interannually. 
Between-haul variability will most likely reduce the precision of survey indices while 
interannual variation might bias estimates and affect time trends. The latter might be called a 
year-effect in survey catches. A study of the potential year-effect in survey catches for the 
EVHOE autumn groundfish survey taking place in the Bay of Biscay showed that, on 
average, 20% of interannual variation in abundance indices could be explained by survey 
conditions for benthic species, 11% for demersal, and none for pelagic species (Poulard and 
Trenkel, submitted) (Fig. 2.2.3). In contrast, survey conditions explained a smaller and 
decreasing part of the interannual variability in the coefficients of variations of these 
abundance indices and in species mean weight. Thus survey conditions might bias survey 
indices. In the same study it was found that taking account of survey conditions could alter 
time trends in species' abundance indices and, as a consequence, influence the stock 
assessment based on survey information.   
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Figure 2.2.3. Box plots with coefficients of determination R2 by species for best fitting models explaining 
survey indices by environmental (wind) conditions and survey design: (a) average survey density; (b) CV of 

average survey density and (c) individual mean weight. Results are grouped by habitat type: benthic, demersal 
(near sea floor) and pelagic.  
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2.3 Estimation of indicator values from surveys 
J. Cotter 
Cefas, Lowestoft, UK. 

Introduction 
When using a survey to estimate average values of an indicator over a stock or a sampling 
stratum of a survey, the statistical method of estimation used can significantly affect the 
computed results.  In this regard, indicators of quantity and attributes present slight 
differences in theory. This is most easily seen with simple numerical examples.   

Indicators of quantities of fish 
Firstly, consider  indicators of abundance (or weight) and suppose for simplicity that there 
are just three fishing stations in the survey area, yielding 1, 3, and 0 fish.  The mean density 
per station over the survey area is 33.134 = .  This estimate is responsive both to the number 
of zero-yielding stations and to the densities of fish observed when fish are found to be 
present.  On the other hand, the domain occupied by the stock implicitly includes only the 
two non-zero values, so that the mean density per station over the stock domain is 224 = .  
This different estimate is only responsive to the densities of fish when found to be present, 
while reduction of stock abundance is estimated by geographic contraction of the stock 
domain.  Of course, the catching of zero fish does not confirm that fish are absent, so the 
estimated stock domain is subject to sampling error as for the estimated mean density.  We 
could distinguish the two estimates by calling them the survey mean density per station and 
the stock mean density per station.  Indicators of the area occupied by a stock are presented 
in the section on spatial indicators. 

Indicators of attributes of the fish 
Next, consider indicators based on measured attributes of the individual fish caught, e.g. their 
lengths, and suppose for simplicity, using the same example, that the single fish at the first 
station was 50 cm, and the three fish at the second station were 10, 12, and 15 cm for which 
the station average is 12.33 cm.  Including the third station where zero fish were caught 
makes no sense when averaging attributes, so the ‘survey mean length’ is unimportant.  
However, we can estimate a stock mean length as (1) a mean for the fish or (2) a mean for the 
stations, i.e. 

1. as ( ) 75.21415121050 =+++ , or 
2. as ( ) 17.31233.1250 =+ . 

Note that the first estimate is weighted towards values observed at the station yielding most 
fish; it is a ratio estimator because it uses the number of fish at a station as a covariate of 
length to improve the precision of the estimate.  The second estimate gives equal weight to 
the average value at each station without regard to how many fish were caught (given that at 
least one was caught).  Choice between the two estimators may depend on the degree of 
within-haul correlation (Pennington and Vølstad 1994). A low degree, i.e. a good mix of 
lengths (in this example) at each station, suggests that the first estimator will be best because 
more fish implies more information about the stock.  A high degree, i.e. long fish 
predominate at some stations, short at others, suggests the second because, by contrast, more 
stations implies more information about the stock.  We could distinguish (1) and (2) as the 
ratio estimator, and the station estimator, respectively, of stock mean length.   
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A complication arises when attributes such as length or weight are not measured on all 
individuals caught by a survey but only on samples of the catch at some stations.  It is 
assumed that the fish in the samples are chosen randomly from the fish in the catch.  The best 
estimate of the average length or weight (etc.) at the station comes directly from the catch 
sample without raising.  However, ratio estimates require all fish caught at each station to be 
included in the calculations.  Consequently, catch sampling may rule out the use of ratio 
estimates, or it may require some sort of approximate fix, e.g. by raising the frequency 
distribution in the sample to one for the catch.  Of course, the statistical properties of the fix 
may be poor and difficult to establish leading possibly to bias of the station mean, or a 
downward bias of the variance causing excessive confidence in the mean. 

Standard errors 
Standard errors for the ratio estimator are available from (Pennington and Vølstad 1994) or 
(Thompson 1992).  Standard errors for the mean of haul results weighted equally depend on 
whether the stations can be considered as random sampling locations over the stock 
distribution.  If ‘yes’, the standard deviation uses the usual formula for simple random 
sampling.  If ‘no’, a spatial surface could be fitted to the haul results and the standard error of 
the integral derived from the model.  Geostatistical estimates may also be feasible using a 
variogram, and bootstrapping (Beare et al. 2002) is another possibility.  Standard errors are 
more complicated when catch sampling has taken place but an analytic approach is offered 
by Cotter (1998). 
 
For a review of the wide range of estimation methods including variances used for fish 
surveys, see section 2.6 in Anonymous (2004). 
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3. Biological indicators 

3.1 Introduction 
Biological indicators are available to measure most aspects of the health of a fish stock in 
addition to its numerical abundance.  These include growth, age composition, fecundity, 
recruitment, and total mortality.  Such indicators are ‘state’ indicators in the ‘pressure-state-
response’ (PSR) system for classifying indicators (Jennings 2005).  A selection of commonly 
considered biological indicators is presented here according to a format given by Halliday 
and Mohn (2001) for which see Appendix 1 of this report.  The advice given for each 
indicator comes from discussions among the participants in the FISBOAT project.  It is not 
intended to replace careful consideration of the relevance and value of each indicator to a 
particular stock. 
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3.2 Intrinsic population growth rate, r 

Description  
The slope of log total abundance against time. 

Stock attribute 
Numerical abundance summed over all ages.  

Derivation 
The indicator is Lotka's intrinsic population growth rate, r.  It has been suggested for fish 
populations by (Quinn and Szarzi 1993).   

Reference points 
Taking 0=r  as the target reference point assumes that, without any noticeable impact of 
fishing, the population would be stable in the long term, even though it varies from year to 
year. 

Interpretability 
If r is significantly lower (respectively higher) than 0, the population is decreasing 
(increasing). The expected and undesired effect of fishing is to decrease r, although many 
other factors might have the same effect.  A long term decline in r suggests that both 
recruitment and standing stock numbers are declining and implies that remedial action is 
necessary. 

Measurability 
r is readily and directly estimable from the time-series of abundance indices produced by a 
survey for all ages combined.  The model is ( )rNN tt exp1−= .  It can be estimated by fitting 
the mixed model, ( ) tt etrtN +++= ωβ0log  where ( ) ( )2,0~ σω Normalt  represents the year 

to year variance, and ( )2,0~ et Normale σ  represents random error.  The estimate of r will 
depend on the time-window chosen since the linear slope measured by r is merely an average 
of fluctuations over time.  The fitted linear slope acts as a smoothing function which may 
give a more stable indication of stock abundance trends than the time-series of raw 
abundance indices.  Deviations from linearity could affect measurability adversely. 

Sensitivity 
Since r is a measure for all ages combined it is likely to be affected by large recruitment 
pulses, particularly if numbers of adults are low.   

Example 
Not available. 

References 
Quinn, T.J. and Szarzi, N.J. (1993)  Determination of sustained yield in Alaska's recreational 
fisheries. International symposium on management strategies for exploited fish populations., 
Alaska sea grant college program, University of Alaska, Fairbanks, Alaska. 
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3.3 Total mortality, Z 

Description  
The coefficient of total mortality averaged over a given age range, i.e. the average mortality 
rate between years 1−t  and t of all individuals aged mina  to 1max−a . 

Stock attribute 
Z measures mortality due to fishing and natural causes.  It is also affected by loss or gain of 
fish from a survey area as a result of a net migration occurring in relation to age. 

Derivation 
Z is the sum of natural and fishing mortalities: MFZ += .  It comes from the exponential 
model of mortality in population dynamics.  The coefficient of total mortality, Z, is defined 
by ZNdt

dN −=  where N is abundance, t is time, and Z is conventionally regarded as 

positive.  This solves to ( )ZtNNt −= exp0  from which (i) ZtNNt −= 0loglog , or (ii)  
( )1log −−= tt NNZ .   

Reference points 
Z during a period of acceptable fishing mortality. 

Interpretability 
Z has been suggested as a robust indicator for exploited populations (Die and Caddy 1997).   
Different Z over different age ranges could be caused by less than full selectivity of the 
survey gear for some ages, or by migrations related to age particularly if the survey only 
covers part of the known range of the stock (Cotter et al. 2007).  Interpretation of Z requires 
that M be assumed constant if, as is usually the case, it is not known accurately. 

Measurability 
Z may be estimated by fitting linear regressions to log abundance indices by year-class over 
age, equation (i) above, the so-called year-class curve method (Cotter et al. 2007).  Removal 
of the youngest, and possibly the oldest ages may be necessary to find a satisfactory linear fit.  
Standard errors are available from the linear modelling.  Alternatively, Z may be estimated 
separately for each (age, year) to (age+1, year+1) using equation (ii) above (Beare et al. 
2002), and averaged over consecutive ages.    

Sensitivity 
Changes in Z over time are only likely to be discerned by surveys when commercial fishing 
effort changes substantially (Cotter, 2001).   Changes in Z regionally resulting from net 
migration from one region to another as the fish grow older can be detected for plaice (Cotter 
et al. 2007).  It is seldom possible to discern effects of changing M on Z except for year 
classes that are not susceptible to the fishery. 

Example 
See references. 
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3.4 Numbers-at-length, numbers-at-age: NaL, NaA 

Description 
The length or age frequency distribution. 

Stock attribute 
Age structure and growth of the population.  Relative numerical strengths of different year 
classes. 

Derivation 
Frequency distributions may be estimated for individual stations, strata, or for the survey as a 
whole. 

Reference points 
A sustainable stock should have a reasonable proportion of larger or older individuals 
capable of breeding, as well as to allow the commercial fishery to sustain itself when 
recruitment is poor.  Protection of size or age classes just in the breeding category may not be 
sufficient if  young fish tend not to be successful at breeding, or if the stock is poorly 
nourished such that individuals may not breed even though they have reached an age when 
they could. 

Interpretability 
A stock lacking large or old fish is likely to be over-fished and under-productive 
economically.  However, similar effects could also occur due to predation or disease for 
example.  Knowing indices of the abundance of predator-, and perhaps prey-species could be 
useful for interpretation of trends in frequency distributions.  Increasing proportions of large 
or old fish implies better survival with age and may signal recovery of a stock. 

Measurability 
• NaA is harder to measure than NaL since otoliths have to be read.  
• In general, RV surveys use gear with very small mesh so that most size and age groups 

will be fully selected.  However, allowances must be made to frequency distributions if 
this cannot safely be assumed.   Variability of the period when young fish settle to the 
bottom (and become vulnerable to a demersal trawl) relative to the survey period could 
affect estimated frequency distributions, as could the escape of large, fast-swimming 
individuals. 

• The following comments follow from the note on estimation in the preliminary section of 
this manual.  An age- or length-frequency distribution compiled from all fish of a species 
caught on a survey (or in a sampling stratum) will be most influenced by the frequency 
distributions prevailing at the stations where most fish were caught.  [This estimate is to 
frequency distributions as the ratio estimate is to means.]  This estimate would be 
preferred if the highest yielding stations are thought to provide the best indication of the 
frequency distribution for the whole stock.     

• The alternative is to estimate a probability density for numbers-at-length or -at-age at 
each station where fish were caught, i.e. a histogram scaled to integrate to unity.  Then 
the probability density for the stock (or a stratum) is obtained by averaging the station 
densities for each length or age class.  [This estimate is to frequency distributions as the 
station estimate is to means.]  This estimate would be preferred if length frequencies 
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differ noticeably between stations and no single station is thought to be more 
representative of the stock than another.    

Sensitivity 
In general, length and age composition of a stock change rapidly in response to fishing 
pressure, then numbers of older, larger fish remain low.  Both indices are affected by pulses 
of recruitment, and this may be a more influential factor than slight changes of fishing when 
fishing pressure is high. 

Example 
Not available 

References 
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3.5 Spawning Stock in number: SSN 

Description 
Mean catch in number of mature fish per tow (or per standard time or distance unit) realised 
during a survey.  

Stock attribute 
Abundance of fish with potential to breed.  Sustainability of the stock. 

Derivation 
For trawl surveys, SSN is probably most simply computed in the same way as the usual 
survey abundance index but with numbers-mature at each fishing station substituted for 
numbers, or numbers-at-age. 
 
Egg surveys directly provide an index of spawning stock biomass (SSB).  If appropriate 
corrections are applied for mortality to the estimates of egg abundance, and if estimates of 
daily specific fecundity are available, then the index can be taken as an estimate of absolute 
SSB.  Otherwise, it will only estimate relative SSB.  SSB is converted to SSN by dividing by 
the mean weight of the mature fish in the population.  The latter parameter, as for the 
fecundity parameters, is obtained by averaging the estimates from the individual fishing 
hauls, using weighting factors proportional to the egg abundance divided by the mean weight 
of the anchovies in the haul.   

Reference points 
Possibly, lowest historically observed estimates known to sustain a satisfactory recruitment. 

Interpretability 
• The index will probably be most closely related to numbers of the younger age classes 

that are mature since their abundance will usually be much higher than that of larger, 
older fish, depending on rates of total mortality, and annual recruitments.   

• Changes in SSN are likely to be due to fishing but could also be caused by natural events.   
• Further understanding of the health of a stock may be acquired by looking at indices for 

first-time and for replicate spawners separately: stocks subject to high F or high M 
generally show higher proportions of first-time spawners.   

Measurability 
Accurate assessment of maturity is crucial (Kjesbu et al. 2003; Murua et al. 2003) 
particularly as the proportion mature is likely to be most hard to estimate accurately for the 
most numerous age classes just coming into maturity.  See also 
www.ices.dk/datacentre/datras/NSIBTSmanualRevVIIdraft.pdf.   Careful standardisation of 
the maturity assessments across years and across survey crews is essential to avoid step 
changes in time or space purely as a result of inconsistent technique.  Objective histological 
methods can be helpful for quality control of maturity assessments based on external 
morphology.  The seasonal timing of the survey is also very important.  Summer surveys can 
be especially poor for estimating maturity of species that spawn in winter or spring unless 
histological criteria are used to hindcast or predict maturation in the previous or next 
spawning season.   

http://www.ices.dk/datacentre/datras/NSIBTSmanualRevVIIdraft.pdf�
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Sensitivity 
SSN indices are likely to reflect changes in the age composition and reproductive potential of 
a stock over time, though precision will depend on standardisation of the techniques of 
maturity staging.  

Example 
Not available. 

References : 
Kjesbu, O.S., Hunter, J.R. and Witthames, P.R. (2003)  Report of the working group on 
modern approaches to assess maturity and fecundity of warm- and cold-water fish and 
squids. Institute of Marine Research, Bergen, Norway.  Fisken og havet, 12, 140 pp. 
 
Murua, H., Kraus, G., Saborido-Rey, F., Witthames, P.R., Thorsen, A. and Junquera, S. 
(2003)  Procedures to estimate fecundity of marine fish species in relation to their 
reproductive strategy.  Journal of northwest Atlantic Fisheries Science 33, 33-54. 
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3.6 Length statistics: Lbar, L25, L50, L75 

Description 
Mean (Lbar) or percentiles (L25, etc) of fish lengths found in survey catches.    

Stock attribute 
Growth, length frequency distribution of stock, recruitment success annually. 

Derivation 
Descriptive statistics for the length frequency distribution. 

Reference points 
Options are: 

• Length at 50% maturity.   
• Lengths associated with biological events such as migrations. 
• Lengths associated with the fishery, e.g. length at 50% selectivity, minimum landing 

size (MLS). 
• Historic values when the stock was deemed to be at a satisfactory level. 

Interpretability 
• In general, high fishing intensity reduces the relative abundance of large compared to 

small fish for two reasons: (a) large individuals are mostly older and therefore have had 
more exposure to fishing gear, and (b) because trawlers tend to catch large fish more 
effectively than small.   

• The L25, L50, and L75 percentiles characterise the smaller, middle sized, and older fish, 
respectively, and are therefore expected to respond differently to recruitment pulses, 
growth factors, and to changes in abundance and spawning stock biomass.   

• A short selection of references relevant to interpretation of fish length are by Ault et al. 
(2005), Kvamme and Froysa (2004), Deriso and Parma (1988), Piet and Jennings (2004),  
Jennings et al. (1999), and Rochet and Trenkel (2003).  

• Lbar for mixtures of species has been shown to decrease in exploited communities 
(Jennings et al. 1999). 

Measurability 
Please refer to the note on estimation in the Introduction to Biological indicators.  Care 
should be taken to standardise the bodily extremities to be used to measure each species, 
particularly across national surveys, and across years (Beckett 1983).  Estimation of Lbar 
with omission of fish shorter than a given length, e.g. the length best separating 0 and 1-
groups, or the MLS, is likely to improve its precision considerably when annual recruitments 
are very variable.  

Sensitivity 
Lbar is most influenced by the smallest, youngest year classes included in the estimate 
because they are usually the most numerous.  Use of a ratio estimator, rather than a station 
estimator (see section on Estimation of indicators from surveys, above) would enhance this 
effect.  It follows that entry of a new year class into the estimate could alter Lbar over only 
one year if that year class had been affected by a step-change of conditions affecting growth 
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or abundance.  However, the full effect on Lbar would not be manifest until all living ages 
had experienced the change.  L25 is affected by the number and size of young fish; thus low 
recruitment of young, small fish would be expected to cause L25 to increase in the same 
year, and vice versa.  L50 would be expected to respond in a similar way to Lbar.  Fish 
longer than L75 are likely to belong to several age classes.  Therefore, L75 is likely to 
decrease gradually over years in response to selective removal of predominantly large 
individuals by fishing faster than they are replaced by growth. 

Example 
Fig. 3.6.1 illustrates length-based indicator series derived from the EVHOE demersal trawl 
survey of the Bay of Biscay, one for anchovy and one for hake.  No trends are evident in the 
Lbar or L quantile series for either species but, curiously, a linear decline in length variance 
could be fitted to the variance of length for hake.  The explanation for this is not known. 
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Figure 3.6.1: Time series of indicators for Bay of Biscay anchovy (code= ENGRENC) and hake (code= 

MERLMER) with long term trends. Data from the IFREMER  EVHOE demersal trawl survey of the Bay of 
Biscay. 
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3.7 Survey catch weight: W 

Description 
The total weight of one (or more) species caught on a survey with constant fishing effort.   

Stock attribute 
Stock biomass, size composition. 

Derivation  
Many surveys routinely weigh catches by species.  If such data are not available, weights 
may be estimated for each species using the allometric formula: ∑= l

b
l alnW  where l is 

length class, ln  is the numbers caught during the entire survey in that length class, and a and 
b are constants for the species, the first being a scaling factor for units, the second being a 
factor relating to change of shape with increasing size.  a and b are determined by plotting 

( )ll nWlog  against llog  using a sample of weighed and measured fish – more details are 
given for the Condition index, below.  The estimates of a and b should be up-to-date.  An 
even simpler weight index derived from length data may be adequate for some species; i.e. 
assume that ∑∝

l llnW 3 .  In this formula, 3=b  implies no change of shape with size. 

Reference points 
A possibility is to use historical estimates of total survey weight when the stock was 
considered to display a satisfactory age composition, i.e. one having sufficient mature age 
groups present to provide resilience to occasional poor recruitment or temporary, heavy 
fishing pressure. 

Interpretability   
• Condition of the fish (weight/length) may be important for interpreting W but only if fish 

weights are measured directly, rather than being estimated from lengths.   
• The quality of information that W provides about the weight of fish in the stock depends 

partly on the relative catchabilities of different sized fish by the survey; e.g. catchability 
of large individuals of strongly swimming species may be low on surveys with short 
tows.   

• Calculation of W might omit fish shorter than the minimum landing size (MLS) for the 
fishery so that W becomes of direct relevance to the legal yield of the fishery.  It might 
then be serviceable as guidance for a harvest control rule.   

• Standardising W as a total weight for the entire survey area is proposed because high 
yielding stations then have most influence on the result.  This could make the index of 
immediate relevance to commercial fishers who tend to target such localities.  On the 
other hand, comparison of the survey mean weight per station with the stock mean weight 
per station (see section on Estimation of indicators from surveys, above) while also 
noting any changes in the estimated domain of the stock may be more relevant for 
ecological studies. 

• W could also be translated into a mean individual weight.  This would be akin to a 
condition index (see C below) but without allowing for body length.  The ratio and the 
station estimator of the stock mean individual weight might then have different  
interpretations due to the different weightings given to stations yielding different 
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numbers of fish (see section on Estimation of indicators from surveys, above).  The ratio 
estimator could be more relevant for a fishery that focuses on aggregations of fish, while 
the station estimator could be more relevant for regional, ecological studies. 

Measurability  
W can be expected to vary a lot for migratory stocks that are not satisfactorily enclosed by 
the survey domain, or whose distribution in relation to fishing stations varies with 
abundance.  Variation from year to year of stations fished, or in the duration of tows should 
be allowed for by raising to a standard level of effort equivalent to the complete, standard 
survey while recognising that bias might have been caused by omission of certain stations.  
The season of the survey should be kept constant because W will be affected by seasonal 
changes in availability of food, and by enlargement of gonads for breeding.  A constant 
selectivity of the survey trawl and fishing method with respect to size is crucial.  For some 
ground-loving species, e.g. certain flatfish, distance towed over the ground may be more 
relevant as a standardising measure for survey CPUE than the duration of the tow in minutes.   

Sensitivity 
A merit of W is that it is less influenced by varying recruitment from year to year than raw 
length indices such as Lbar because young fish, although very numerous, are very small, so 
their abundance and weight tend to cancel in the overall index.   W would be influenced by 
changing abundance and average condition of individuals. 

Example 
Heessen et al. (1997) state that the International Bottom Trawl Survey of the North Sea and 
Skagerrak covered the whole of the North Sea, Skagerrak and Kattegat from 1974 onwards.  
Catch-at-length data for quarter 1 were obtained for cod from the ICES secretariat and 
average catch weight per fishing station per rectangle was estimated using a ratio estimator 
for each of the 138 rectangles in the standard area used to estimate the abundance index for 
cod.  Weight indices were estimated using ∑∝

l l lnW 3
. .  The results were summed over all 

rectangles to estimate W for the whole survey.  The time series from 1974 to 2005 is shown 
in fig. 3.7.1, below, together with the numbers of rectangles where positive catches of cod 
were taken.  The obvious downward trend in W from approximately 1980 is consistent with 
the well known decline in the North Sea cod stock in recent years.  Variable results in the 
1970s may possibly have been due to inconsistent survey practices in the early days of this 
survey.  However, no attempt has been made here to remove inconsistencies at any time in 
the series.  See Heessen et al. (1997) for details of inconsistencies over the period. 
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Figure 3.7.1.  International Bottom Trawl Survey, quarter 1: cod weight indices, W, computed from numbers-

at-length by ICES rectangle assuming isometric growth.  Data supplied to FISBOAT by ICES secretariat. 
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3.8 Condition: C 

Description 
Condition refers to average body weight for a given body size.  It is often normalised as 
Fulton’s condition index (Anderson and Neumann 1996), 3kLW , where k is chosen for 
appropriate scaling. 

Stock attribute 
Nutritional status of individuals, reproductive fitness. 

Derivation  
C may be estimated by a in the allometric equation ∑= l

b
l alnW  where l is length class, ln  

is the numbers caught in that length class, a measures condition as well as serving to scale 
the units of measurement, and b represents the changing shape of the species with increasing 
length.  Partitioning this equation by length gives b

ll alnW = .  Taking logs and substituting C 
for a gives ( ) lbCnW ll logloglog += .  Therefore a regression of log (average weight per 
individual at length l) on llog  will allow estimation of Clog  as the intercept and b as the 
slope.  In many studies, b is standardised at 3, as for the Fulton index, implying growth 
without change of shape. 

Reference points 
Comparison with historic data might reveal when problems are occurring. 

Interpretability  
• Low condition implies too much competition for available food.  This in turn implies that 

some mature individuals may not mature reproductively for the coming spawning season, 
or that their fecundity may be reduced by follicular atresia (Thoresen et al. 2006; 
Kennedy et al. in press).  Low condition can also increase the age of first maturity, and 
possibly increase natural mortality of post spawning individuals.   

• Condition varies in males and females according to season, for example after a winter 
fast, and over the reproductive cycle especially for species with a capital spawning 
strategy (Stearns 1992).  See also (Lambert et al. 2003). 

• Low condition implies reduced incomes for fishers because they will not attain high 
prices for the fish they catch.   

Measurability  
The regression could be carried out at each station and the estimated C averaged over all 
stations; i.e. a station-based estimator, giving equal weight to each station yielding fish.  
Alternatively, the regression could be carried out for all stations at once; this is a regression 
analogue of a ratio estimator because the results at each station are automatically weighted in 
relation to the number of fish caught at each length.  The weights assigned to each station 
will therefore vary from length class to length class.  Please refer to the section on 
Estimationof indicators from surveys, above. 

Standard errors for a and b estimated from a regression are likely to over-estimate confidence 
in the result if the individual fish in the sample were not independently and randomly 
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selected from the stock, as they would not be if taken with a trawl survey for example.  This 
should be kept in mind when making comparisons from year to year. A spatial model could 
be a good way to summarise station-by-station results because condition may vary with 
location, particularly with latitude if accompanied by changing temperatures. Kriging is 
another possibility. 

Sensitivity 
Not known.  

Example 
Not available. 

References 
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indices.  In: Fisheries Techniques. ed Murphy, B.R. and Willis, D.W. 2nd edn, American 
Fisheries Society: 447-482. 
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regulation in plaice Pleuronectes platessa L. tested on three Irish Sea spawning populations.  
Canadian Journal of Fisheries & Aquatic Sciences. 
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Thoresen, A., Marshall, C.T. and Kjesbu, O.S. (2006)  Comparison of various potential 
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3.9 Gonadosomatic index: GSI 

Description 
The gonadosomatic index (GSI) is the ratio of gonad weight to body weight. 

Stock attribute 
Nutritional status, reproductive fitness. 

Derivation  
Average gonad weight/body weight, or gonad weight/length3. 

Reference points 
Comparison with historic data might reveal when problems are occurring with regard to 
stock reproductive potential. 

Interpretability  
• GSI depends on fish size and will obviously be low for immature individuals.  It will also 

increase rapidly towards the start of the spawning season.  It is likely to be highest after 
ovulation when the first batch of eggs is ready for spawning, and lowest just after 
spawning when fish have not only lost their reproductive material but are also likely to 
show low bodily condition.  

• GSI may vary with location, particularly with latitude if accompanied by changing 
temperatures. Spatial modelling or Kriging could be helpful for seeing these effects.  

• A low GSI in fish of mature age at the start of the spawning season may imply skipped 
spawning (Rideout et al. 2005), suggesting too much competition for available food, as 
well as low reproductive success in the coming spawning season, either through lack of 
fertile adults or through reduced egg production. 

Measurability  
Surveys intended to estimate GSI should be timed to coincide with the onset of spawning, or, 
if that is not possible, to avoid the post-spawning period.  They should occur in the same 
season each year.  At least a sample of fish from every fishing station should be measured 
individually for length, body weight, and gonad weight.  Stratification by depth bands may 
be helpful for estimation if GSI is related to depth, as it is for some species (Rijnsdorp 1989).  
A cut-off length for exclusion of immature individuals would save much pointless disection 
work on deck.   

Weighing gonads requires that they be removed from the fish and weighed on a balance 
capable of resolving down to 1% of the gonad mass.  Motion compensated balances capable 
of resolving to 0.1g are required for small fish such as sprat or anchovy weighed at sea.  An 
advantage of GSI over maturity indices is that it does not require accurate maturity staging.  

Sensitivity 
The GSI is very sensitive to the maturity stage and the timing of the spawning cycle. 

Example 
Not available. 
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Rideout, R.M., Rose, G.A. and Burton, M.P.M. (2005)  Skipped spawning in female 
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3.10 Length and age at maturity: LaM50, AaM50 

Description 
The length or age at which 50% of the individuals in a fish stock are estimated to have 
reached reproductive maturity. 

Stock attribute 
Reproductive capability, spawning stock biomass, nutritional status.   

Derivation 
The estimated proportion mature at each length is plotted against length and the length at 
which 50% of individuals are mature is the LaM50.  Fitting a logistic or other function may 
be the best way to estimate this statistic using reaction norms (Heino et al. 2002).  If otoliths 
are removed at the same time as gonads are examined, and subsequently read without 
breaking the link with the observation of maturity, the AaM50 can be estimated similarly 
with a plot over age.   

Reference points 
Reaction norms are used to describe the phenotypic range of LaM50 and AaM50, and to 
identify evolutionary selection of alleles favouring early maturation.  They may already be in 
the genetic structure of the population, or they may be introduced by genetic drift and/or 
mutation (Heino et al. 2002). 

Interpretability 
• AaM50 has been found to decrease under the effect of fishing  (Trippel 1995; Rochet et 

al. 2000). If individual growth remains similar under the impact of fishing, LaM50 will 
decrease in a similar manner. Compensatory growth might, to some degree, reduce the 
impact of fishing on the observed reduction in length at maturity but strong signals 
should still be detectable.   The reaction norm method is used to investigate evidence for 
evolution of maturation stage with respect to size and age after several generations of 
high fishing mortality.   

• LaM50 and AaM50 may both vary with location, particularly with latitude if 
accompanied by changing temperatures.  

Measurability 
Please refer to Measurability of Spawning stock number (SSN) for comments on estimating 
maturity and the timing of surveys.  Since maturity staging requires that fish be opened and 
the gonads examined carefully, it is time-consuming on deck.   

Sensitivity 
Problems with achieving consistent maturity staging from year to year when using only 
external morphology may seriously reduce the sensitivity of LaM50 and AaM50 to fishery 
and environmental factors.  Better sensitivity could be expected if histological examinations 
are carried out for each fish but this is obviously much more time-consuming. 

Example 
Not available. 



3. BIOLOGICAL INDICATORS 

 40

References 
Heino, M., Deickmann, U. and Godø, O.R. (2002)  Measuring probabilistic reaction norms 
for age and size at maturation.  Evolution 56, 669-678. 
 
IBTS w.g. (revision VII in draft in 2007).  Manual for the international bottom trawl surveys.  
Appendices VII Finfish maturity key, and VIII Four stage maturity key for skates and rays 
(Rajidae).  www.ices.dk/datacentre/datras/NSIBTSmanualRevVIIdraft.pdf   
 
Rochet, M-J., P.A. Cornillon, R. Sabatier & D. Pontier. 2000  Comparative analysis of 
phylogenetic and fishing effects in life history patterns of Teleost fishes. Oikos 91: 255-270. 
 
Trippel, E.A. 1995  Age at maturity as a stress indicator in fisheries. Bioscience 45: 759-771. 



4. SPATIAL INDICATORS 

 41

4. Spatial indicators 

4.1 Introduction 
Spatial indicators are statistics aimed at describing and summarizing the spatial distribution 
of populations, in terms of location, fish density or possibly an environmental variable e.g. 
depth.  A list of 10 geostatistical indices are here proposed (Woillez et al., 2007) to 
characterise occupation, aggregation, location, dispersion, correlation and overlap. These 
notions are somewhat related, e.g., aggregation, dispersion and occupation, and formal 
relationships exist between indices. The centre of gravity of a population with a measure of 
dispersion around it had been proposed already (Swain and Sinclair 1994, Atkinson et al. 
1997, Bez and Rivoirard 2001). The occupation and aggregation indices are not truly spatial 
in the sense that they are sensitive to the histogram and not to the spatial location of values. 
Various indices to characterise aggregation have been suggested (area coverage: Swain and 
Sinclair 1994, Gini index: Myers and Cadigan 1995, spatial selectivity index: Petitgas 1998) 
which all relate to the area coverage of highest values. But the spreading index is more 
general in the sense that the amount of zeroes do not affect this index. Therefore in the 
calculation of the spreading index the delineation of the data positive domain is not 
necessary. The spatial indices are useful in characterising the spatial organisation of the life 
cycle. It can be evidenced that young immature fish, young matures and older matures differ 
in some aspects of their spatial distributions, in particular for location, aggregation and 
dispersion (Woillez et al., 2007). The spatial indices have the potential to be used in a 
monitoring system so as to detect changes in the spatial distributions, which could be helpful 
in relating the spatial distribution properties of fish stocks to their dynamics, climate change 
or habitat conservation.  
 
When selecting spatial indicators for this manual, care has been taken to avoid the problem of 
zero density values by excluding statistics that would depend on the inclusion or exclusion of 
zero density values according to their belonging to a more or less arbitrarily delineated 
domain. For instance, the mean of the density values within a given domain is not considered 
here, nor the variance or the Gini index of these values to measure their statistical dispersion. 
On the contrary, the contribution of the zero density values is zero in the statistics that have 
been selected here. For instance, the center of gravity, or mean location, of a population will 
depend on whether the density value at a sampled location is zero or not, but if it is zero, its 
numerical contribution to the center of gravity will be zero. 
 
In particular the contribution of zero density values is zero in all statistics based on the 
individuals of the population: e.g. the mean location of the population, which is the mean 
location of the individuals that constitute this population (in such a case the statistics are 
weighted by the fish density). By contrast, the Positive Area looks at where the fish density 
values are strictly positive but does not depend on the level of these density values, that is, on 
each individual. 
 
Some of the selected statistics (e.g. the center of gravity) would change if the fish density 
values were permuted between sampled locations (even assuming a regular sample grid). The 
other statistics would be unchanged: for instance the Positive Area measures the domain 
covered by the non-zero density values, not its shape, and it would be unchanged by 
permuting density values. Similarly the Spreading Area or the Equivalent Area will depend 
on the histogram of density values, not on their location (at least assuming a regular sample 
grid). As a consequence these statistics are not dependent on the large-scale spatial structure. 
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However they do depend on the fine scale structure through the 'support', i.e. the surface in 
size and geometry (e.g. the trawled area) on which each fish density is measured. 
 
Note: references for the following indicators are collected together at the end of  section 4. 
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4.2 Centre of gravity: CG 

Description 
The center of gravity is the mean location of the population, that is, the mean of the location 
of its individuals (Bez, 1997). 

Stock attribute 
Mean location of the population. 

Derivation 
Let x be a point in two-dimensional space (short for the usual two-dimension notation (x, y)), 
and z(x) be the density of population at location x. Then, the total abundance of the 
population (Q) is calculated from: 
 

∫= xxzQ )d( , 
 
and the probability density function of the location x of a random individual is z(x)/Q. The 
centre of gravity (CG) is: 
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In practice, this statistic is estimated from the data through discrete summations over sample 
locations. In the case of irregular sampling, areas of influence around samples are used as 
weighting factors (Figure 4.2.1). Practically, from sample values zi at locations xi, with areas 
of influence si, we have: 
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The area of influence of a sample location is defined as the area made up of the points in 
space that are closer to this sample than to others. It can be evaluated by overlaying a very 
fine regular grid and counting the grid points closer to the sample. Known or supposed 
boundaries (e.g. land, a limit distance of influence from a sample location) of the sampled 
population may be used. 
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Figure 4.2.1. Areas of influence (delimited by the black lines) of sample points (in red). 

 

Reference points 
CG during a period of acceptable state of the population.  

Interpretability 
The CG indicates the mean location of the surveyed population. Note that fish may not be 
present at the CG location (which may be on land, e.g. within an island). Note also that part 
of the population may be not represented, when not covered geographically by the sampling. 
To check that movements of CG when following a series are not due to changes in the 
sampling design (e.g. due to bad weather), the CG of the sample locations (that is, 
unweighted by fish density) can also be produced. 

Measurability 
The estimated CG is sensitive to high fish density values. It may differ from the true 
unknown CG, particularly when high density values exist (whether sampled or not). 

Sensitivity 
Despite the possible difference between true and estimated CG, a shift during a series is 
likely to represent an actual shift, when it is gradual. On the other hand, an eccentric 
estimated CG requires a visual inspection of the fish density to detect the causes (e.g. unusual 
presence of high density values in some remote area, or disappearance of usually high values 
in some region; see the indicators Inertia and Number Of Patches). 

Examples 
Several authors have used the center of gravity, also referred to as the distributional centroïd 
or as the center of an ellipse to describe the distribution of a population or a life stage of a 
population such as Walleye pollock eggs and larvae (Kendall and Picquelle, 1990), Pacific 
hake larvae (Hollowed, 1992), cod off Newfoundland (Atkinson et al., 1997), yellowtail 
flounder off the Grand Bank (Brodie et al., 1998) or European hake in the Bay of Biscay, 
eggs and larvae (Alvarez et al., 2001) as well as fish at age (Woillez et al., 2007 ). For 
example, the CGs have been used to describe the distribution of the strong year classes on the 
Pacific hake late stage larvae and also the systematical shift towards the south east of cod off 
Newfoundland from 1987 to 1993. Distributions have been also described temporally along 
the season, e.g. for eggs and larvae of the European hake in the Bay of Biscay and of 
Walleye Pollock. 
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4.3 Inertia: I 

Description 
The inertia is the variance of the location of the individuals of the population, that is, the 
mean square distance between an individual fish and the centre of gravity of the population 
(Bez, 1997). 

Stock attribute 
It describes the dispersion of the population around its centre of gravity. 

Derivation 
With the notations used for CG, the inertia (I) is 
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Reference points 
I during a period when the population was in an acceptable state. 

Interpretability 
The inertia I indicates how dispersed the population is around its center of gravity. 

Measurability 
I is sensitive to high density values.  I is homogeneous to square nautical miles (in 2D). The 
square root of I, that is, the root mean square distance between individuals and their CG, may 
be preferred, being homogeneous to nautical miles. 

Sensitivity 
An increase in I, for instance, indicates a population more dispersed around its CG, i.e. high 
density values are more scattered. While the population is then scattered over a larger region, 
the actual area covered by the population may be smaller (see the different Area indicators). 

Examples 
Most of the authors cited for the CGs also described the studied population in terms of 
inertia, or they refer to the size of its graphical representation through an ellipse (see next 
section on anisotropy). Brodie et al. (1998) showed a drop in the area of the ellipse for the 
yellowtail flounder of the Grand bank in late 1980 after a period of stability. Atkinson et al. 
(1997) showed that a shift of the CG is accompanied by a decrease of the size of the ellipse, 
i.e. the inertia. For the European hake in the Bay of Biscay, concerning the eggs, the size of 
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the ellipses increased somewhat from February to May in both directions, N-S and W-E 
(Alvarez et al., 2001), while the inertia increased with the age for fish stage (Woillez et al., 
2007). 
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4.4 Anisotropy and isotropy: An, Is 

Description 
When the dispersion of the population around its center of gravity is the same along every 
direction, the spatial distribution is said to be isotropic. In general, the dispersion of a 
population around its centre of gravity is not identical in every direction of space: there is an 
anisotropy. The root mean square distance to the center of gravity is maximal along the first 
principal axis, and minimal along the second principal axis, orthogonal to the first one (in 
2D). The anisotropy index is taken as the ratio (>= 1) between these distances, and the 
isotropy index as the inverse ratio (<= 1). 

Stock attribute 
Anisotropy measures the elongation of the spatial distribution of the population. 

Derivation 
In two dimensions, the total inertia of a population can be decomposed on its two principal 
axes, orthogonal to each other, explaining respectively the maximum and the minimum of the 
inertia. These two principal axes and their inertia can be obtained as the eigen vectors and 
values of a principal component analysis of the coordinates of the individuals of the 
population (i.e. the coordinates of the samples weighted by the fish densities) (Bez, 1997). 
The square root of the inertia along a given axis (or root mean square distance to CG) gives 
the standard deviation of the projection of the location of the population along that axis. 
These can be represented conveniently on a map with a cross depicting the two principal 
directions (Figure 4.4.1), or with an ellipse (with area proportional to the total inertia). The 
anisotropy index (>= 1) is the square root ratio between the maximum and the minimum of 
the inertia. Similarly, an index of isotropy can be defined as the inverse of anisotropy, 
ranging more conveniently from 0 to 1: 
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Figure 4.4.1. Two examples of spatially distributed data sets, with anisotropy being more marked in the second 
case. The black cross is located on the center of gravity, from which it represents the square root of inertia along 

the two principal directions. 
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Reference points 
The indicators during a period of acceptable state of the population. 

Interpretability 
The anisotropy index gives roughly the elongation of the spatial population. It does not take 
into account the actual shape of the distribution, which may be different from being elliptical 
or may be constituted by different patches.  

Measurability 
The anisotropy and isotropy indices are equivalent, being the inverse of each other. However, 
since the anisotropy index is unbounded above 1, the isotropy index is more robust and may 
be more conveniently used, e.g. in correlation or regression analyses. 
 
In case of isotropy, that is, when the anisotropy and isotropy indices approach 1, the principal 
axes, orthogonal to each other, become arbitrary. 

Sensitivity 
Sudden changes in anisotropy index may be due to the disappearance or, on the contrary, the 
appearance, of patches of fish in some areas. 

Examples 
Few authors have discussed the anisotropy even if it was available in the representation 
mode. In Alvarez et al., 2001, the direction of the principal axis of the hake egg distribution 
in the Bay of Biscay corresponds to that of the shelf break, i.e. NW-SE, along the whole 
sampling period. Woillez et al., 2007, completes the description for the fish stage, showing a 
preferential direction, more marked for age 0 and age 5+. The direction for age group 0 
corresponds roughly to muddy sediment off Brittany. For ages 4 and 5+, the direction 
corresponds to the shelf edge, where older hake are mainly concentrated. For the 
intermediate ages, the population is still anisotropic, probably because of the general shape of 
the continental shelf, but the anisotropy is less marked. 
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4.5 Global index of collocation: GIC 

Description 
The global index of collocation looks at how geographically distinct two populations are by 
comparing the distance between their CGs and the mean distance between individual fish 
taken at random and independently from each population (Bez and Rivoirard, 2000). 

Stock attribute 
Overlap of two spatial populations. 

Derivation 
Let us consider two populations with densities z1(x) and z2(x) at point x, with CGΔ  being the 
distance between their centers of gravity and 

1z
I and 

2zI , their respective inertias ( 
 
Figure 4.5.1). Then the mean square distance between individuals taken at random and 
independently from each population is 
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or 1 if 

1 2

2 0Z ZCG I IΔ = = = . The spatial index ranges between 0, in the extreme case where 
each population is concentrated on a single but different location (inertia = 0), and 1, where 
the two CGs coincide. 
 

 
 
 
Figure 4.5.1. Collocation of two spatial populations, represented by two ellipses showing their center of gravity 

and their inertia, is measured with the GIC through specific distances. 

Reference points 
GIC between acceptable states of the populations. 

Interpretability 
Collocation is considered here in a global meaning, the populations being, grossly, in the 
same place. This is not to say that the two populations are present at the same locations. A 
spatial population that would be distributed all around a first one, with the same CG, would 
give a GIC equal to 1, even if not overlapping the first population.  
 
Local overlapping between two populations would rather be addressed using the local index 
of collocation, that is, the noncentered correlation between their fish densities. 
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Measurability 
Alternative indices, also between 0 and 1, may be sqrt(GIC) for collocation, or sqrt(1-GIC) 
for separation (ratio between distance between the CGs and distance between individuals 
from the two populations). 

Sensitivity 
Unusually high GIC requires inspection of the fish density data. 

Examples 
In Bez and Rivoirard, 2000, global and local collocation indices have been measured on 
pelagic species in the Bay of Biscay. Local collocation appears very small between mackerel 
and the other species (anchovy, sardine and horse mackerel).  In Woillez et al., 2007, GIC is 
used to detect outliers in the age time series of the hake population in the Bay of Biscay. The 
year 2000 appears to be particular for age 0. 

References 
See the main references of the topics about the spatial indicators. 



4. SPATIAL INDICATORS 

 51

4.6 Number of spatial patches: NOP 

Description 
A spatial population of fish may be distributed into several spatial patches, with size much 
larger than a fish school. An algorithm has been written to identify patches (Woillez et al., 
2007) by attributing each sample to the nearest patch, with respect to a maximal threshold 
distance to its CG. The Number of Patches then includes all patches that include more than a 
given part (e.g. 10%) of the total abundance. 

Stock attribute 
Patchiness. 

Derivation 
The algorithm starts from the value displaying the maximum density z(x), and considers 
every other sample in decreasing order of density (Figure 2.6.1). The maximum value 
initiates the first patch (1). Then, the current sample value is attributed to the nearest patch, if 
the distance to its CG is smaller than the threshold distance dlim (2). Otherwise, the current 
sample value defines a new patch (3). Spatial patches whose abundance is >10% of overall 
abundance are retained (N). The summary index is then the number of patches. 
 
 

 
 
 

Figure 2.6.1. Main steps of the algorithm used to determine the number of patches of a spatial population. 

Reference points 
Number of patches during a period of acceptable state of the population. 

Interpretability 
The identification of patches is dependent on the threshold distance, typically some fraction 
of the diameter of the sampled domain, chosen by the user. 

Measurability 
The Number of patches is very sensitive to the location of the highest fish density values, but 
this makes sense. 
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Sensitivity 
In a series, the location of patches is likely to present some stability. Hence a change in the 
number of patches is likely to reveal the disappearance, or the appearance of fish in some 
areas. 

Examples 
In Woillez et al., 2007, the Number of Patches have been illustrated on the hake population 
in the Bay of Biscay. According to ages, it increases slightly up to age 3 then decreases. 
Disappearance of patches has been observed and localised for age 0 hake, in particular for the 
year 2000.  

References 
See the main references of the topics about the spatial indicators. 
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4.7 Positive area: PA 

Description 
The positive area is the measure, in square nautical miles, of the space occupied by fish 
densities strictly above zero (Woillez et al., 2007). 

Stock attribute 
Area of presence, in square nautical miles, occupied by the stock, even with a low density. 

Derivation 
The positive area is estimated from data as the sum of the areas of influence around samples 
where there are fish densities >0 (Fig. 4.7.1): 
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Figure 4.7.1. Bubble plot of the sample values and corresponding positive area shaded in red (with a limit to the 
area of influence of each sample). 

Reference points 
Positive Area during a period of acceptable state of the population.  

Interpretability 
The positive area measures the area of effective presence, in square nautical miles. It does 
not include zero density areas possibly existing between positive density areas, and it may 
correspond to a small fraction of the geographical envelope of fish presence, in particular 
when the dispersion (inertia) is high. 

Measurability 
Zero values of density make no contribution to the positive area. However, the positive area 
is sensitive to the low values of density, because the contribution of a small density value is 
the same as that of a high density value. 
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Sensitivity 
Changes in the Positive Area may reveal changes in the way the population occupies the 
space, including the small fish density values that are usually numerous even though they 
contribute poorly to the global abundance. 

Examples 
In Woillez et al., 2007, Positive Area of the hake population in the Bay of Biscay was 
relatively stable until age 3 then dropped. It was shown also that whereas Positive Area 
decreased with age, inertia increased with age, the older hake occupying a smaller but more 
dispersed area. 

References 
See the main references of the topics about the spatial indicators. 



4. SPATIAL INDICATORS 

 55

4.8 Spreading area: SA 

Description 
The spreading area is a measure, in square nautical miles, of how the population is 
distributed in space, taking into account the variations in fish density (Woillez et al., 2007). 

Stock attribute 
A measure of the area occupied by the stock, based on how the abundance is spreading in 
space. 

Derivation 
Let T be the cumulative area occupied by the density values, ranked in decreasing order; let 
Q(T) be the corresponding cumulative abundance, and Q be the overall abundance. The SA 
(expressed in square nautical miles) is then simply defined as twice the area below the curve 
expressing (Q–Q(T))/Q as a function of T (Fig. 4.8.1): 
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As (Q– Q(T))/Q decreases from 1 to 0 and is convex, the SA is less than the PA. It equals the 
PA when the population is evenly spread with a constant density. 
 
 

 
 
 

Figure 4.8.1. SA is defined as twice the area below the curve expressing (Q-Q(T))/Q as a function of T. 

 
The curve above is a derivation of the Lorenz curve representing the histogram of fish 
density values, but having the advantage of receiving no contribution from zero density 
values. The spreading area can be related to the area occupied by the positive fish density 
values and their Gini index of dispersion G0 through 0 1SA G

PA
+ =  (Woillez et al. 2007). 

Reference points 
Spreading Area during a period of acceptable state of the population.  
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Interpretability 
A spatial abundance is generally distributed in space into highly varying fish density values,  
spreading over its positive area. The spreading area index has been designed to describe this 
spreading, or equivalently the lack of aggregation or variation, while satisfying the condition 
of having no contribution from zero density values. Despite its name, the spreading area 
depends exclusively on the amount and histogram of positive fish density values. 

Measurability 
Zero values of density make no contribution to the spreading area. The spreading area 
depends on the variation in density values (and not on the absolute abundance) and is much 
less sensitive to low values of density than the positive area. 

Sensitivity 
Changes in SA are likely to reveal changes in the way the abundance is split into low and 
high density values. 

Examples 
In Woillez et al., 2007, the hake population of the Bay of Biscay has been described through 
the SA. This showed a better spread of the 3 year-old hake. In addition, a decrease of SA 
through the time series was detected for hake age 4 and 5+.  
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4.9 Equivalent area: EA 

Description 
The Equivalent Area represents the area, in square nautical miles, that would be covered by 
the population if all individuals had the same density, equal to the mean density per 
individual (Bez and Rivoirard, 2001). 

Stock attribute 
An individual-based measure of the area occupied by the stock, in square nautical miles. 

Derivation 
The transitive geostatistical approach (Matheron, 1971) can be used to describe the spatial 
distribution of a fish population when it includes a few large values of density, and when it is 
difficult to delimit a domain with homogeneous variations. The spatial structure is then 
represented by a (transitive) covariogram, a function of the distance between two locations: 
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Here, the equivalent area (EA) is defined as the integral range of the covariogram: 
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It can also be written: 
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It represents the area that would be covered by the population if all individuals had the same 
density, equal to the mean density per individual (the denominator in the previous equation 
(Fig. 4.9.1)). 
 

 
Figure 4.9.1. The probability density function for a random individual to be at x is given by z(x)/Q. 
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Practically, in the discrete case with sample values zi and areas of influence si, it gives:  
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The EA ranges from 0 to the PA. It would be equal to the PA if all strictly positive values of 
density were the same. The EA can be related to the area occupied by the positive fish 
density values and their coefficient of variation CV0 through 2

01PA CV
EA

= + . The EA and SA 

are related through inequalities, in particular 9
8

EA SA≤  (Woillez et al. 2007). 

Reference points 
Equivalent Area during a period of acceptable state of the population.  

Interpretability 
The positive area describes the area of presence of fish, with a low density value being 
equivalent to a high one. The spreading area describes the area occupied by the stock, taking 
into account the variations in fish density. Now, the equivalent area is still another way to do 
this, while being individual-based (it gives the same weight to each individual, that is, the 
weight of a sample is proportional to its fish density). Just like the spreading area, the 
equivalent area depends exclusively on the amount and histogram of positive fish density 
values. 

Measurability 
The equivalent area is independent of the absolute abundance. Being individual-based, it is 
very sensitive to the highest density values.  The inverse of the equivalent area can be 
considered as an index of aggregation (Bez and Rivoirard, 2001). 

Sensitivity 
Changes in EA are likely to reveal changes in the contribution of high density values to the 
total abundance. 

Examples 
In Woillez et al., 2007, the Equivalent Area on the hake population of the Bay of Biscay was 
shown to be larger for hake aged 3 years.  
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4.10 Microstructure index: MI 

Description 
The Microstructure Index (Woillez et al., 2007) measures the relative importance of 
structural components having a scale smaller than the sample lag (including random noise). 

Stock attribute 
The fine-scale variability of the fish density surface. 

Derivation 
The microstructure index (MI) is taken as the relative decrease of the transitive covariogram 
(Matheron, 1971; Bez et al., 1997) between distance zero and a distance h0 chosen to 
represent the mean lag between samples (Fig. 4.10.1): 
 

( (0) ( 0))
(0)

g g hMI
g
−

=  

 
It lies between 0 and 1. Values close to 0 correspond to a very regular, well-structured 
density surface, and values close to 1 correspond to a highly irregular, poorly structured, 
density surface. 
 
 

 
 

Figure 4.10.1. Real (dashed line), experimental (blue points) and modelled covariogram (red line) with the 
representation of the microstructure index. 

Reference points 
Microstructure Index during a period of acceptable state of the population.  

Interpretability 
The Microstructure Index does not make the distinction between spatial variability with a 
range less than the chosen lag but positive, and purely random variability (e.g. due to noise or 
sampling error). 
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Measurability 
The Microstructure Index, as obtained from the transitive covariogram, is very sensitive to 
high fish density values (but it is more robust than its equivalent feature that would be 
obtained from the more traditional variogram or covariance). 

Sensitivity 
A high Microstructure Index is likely to correspond to fine-scale aggregations. 

Examples 
In Woillez et al., 2007, Microstructure Index has been followed through age and time on the 
hake population in the Bay of Biscay. It showed a relative stability for the younger ages, then 
it rose markedly from age 4. 
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5. Methods 

5.1 Introduction 
The following methods for integrating and interpreting time-series of indicators as estimated 
from research vessel surveys were developed and discussed during the FISBOAT project.  In 
general, they attempt to ease the problem of deciding whether an indicator or a suite of 
indicators is signalling, or will signal, a change in the state of a fish stock that calls for an 
adjustment to the controls on a fishery.  
 
Section 5.2 by Lembo et al. presents an age-length based simulation model, Aladym, for 
predicting the effects of different fishing pressures on a single population of fish.  Section 
5.3, also by Lembo et al. describes how a Monte Carlo approach can be used with Aladym in 
order to help create reference points for selected indicators. 
 
Section 5.4 by Trenkel et al. points out the importance of relating current trends in indicator 
values with a previous reference period when indicator values were agreed to be either 
satisfactory or not.  They offer a simple system for integrating different types of biological 
and fishery information provided by indicator time series, and by other sources if available, 
in a way that can be discussed by stock managers, stake-holders, and scientists in order to 
decide what, if any, measures should be taken to control the fishery.  This would often form 
part of an adaptive management scheme. 
 
Mesnil and Petitgas, section 5.5, describe how the quality control schemes that originated in 
manufacturing industry can be adapted to monitor fishery and environmental qualities 
derived from time series of indicators.  The CUSUM control-chart method offers 
considerable potential for rapid detection of changes of state. 
 
Bogaards et al., section 5.6, describe a simple, hypothesis-testing approach for  deciding how 
long will be needed before an indicator series is expected to reveal a given linear trend.  This 
could be helpful for deciding whether a survey is sufficiently sensitive to detect a response to 
new controls on a fishery within a reasonable time frame. 
 
In section 5.7, Trenkel proposes a GAM and bootstrap-based solution for the long standing 
problem of deciding whether recent changes in an important time-series represent a valid 
signal, or just sampling noise.  Such methods can greatly assist the provision of rapid, 
confident advice for managing a fishery. 
 
In sections 5.8 and 5.9, Petitgas describes and illustrates two complementary approaches to 
making a single assessment from multiple time-series of indicators.  In the first part, the well-
known 'traffic light' method is set out.  In the second, multivariate methods based on 
principal components and multi-factorial analysis (MFA) are described and illustrated with 
an example.  The multivariate analysis is likely to provide complementary interpretation of 
results in the traffic light table. 
 
Petitgas and Poulard in section 5.10 describe a multivariate statistical method for visualising 
groupings of indicator variables in space and time.  They applied this method during the 
FISBOAT project to examine the changing spatial distributions of fish with age, as signalled 
by the spatial indicators described in the first part of this manual. 
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In section 5.12, Woillez and Rivoirard describe a multivariate statistical method applicable to 
parallel time series of values for many indicators when continuity of some trend in time is of 
interest, possibly in relation to a study of cause and effect.  MAFs are linear combinations of 
variables that are conceptually similar to principal components (PCs) but, whereas a fitted 
series of PCs explains independent components of variance the magnitude of which 
decreases from first to last, a series of MAFs explains independent components of 
autocorrelation, the first of which displays the highest, and the last of which displays the 
lowest autocorrelation at lag 1 observation in the time series. Thus MAFs offer a way of 
finding the combination of variables that present maximal continuity in time. 
 
Finally, in section 5.13, Cotter reviews and illustrates with example analyses a collection of 
nonparametric statistical methods that allow assessment of indicator trends whilst avoiding 
the assumptions and other uncertainties of modelling.  Suggestions are made for improving 
the objectivity of statistical inference. 
 
Several of the methods use especially written software.  The FISBOAT project team agreed 
at the outset to use the R programming language because it is freely available from 
http://www.r-project.org/, it is highly versatile and because, by doing so, the portability of 
software and ideas is maximised.  The software can be downloaded freely from 
http://www.ifremer.fr/drvecohal/fisboat/index.htm.  Data sets and spreadsheets referred to in 
the following sections should also be available from this site. 

http://www.r-project.org/�
http://www.ifremer.fr/drvecohal/fisboat/index.htm�
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5.2 Simulating population dynamics.   

5.2.1 ALADYM(v 08) 
Lembo G., A. Abella, F. Fiorentino, S. Martino and M.T. Spedicato 
COISPA Tecnologia & Ricerca, Bari, Italy 

Introduction 
ALADYM (Age-Length Based Dynamic Model) is an age-length based simulation model 
developed within the conceptual framework of dynamic pool models, following the 
predictive Thompson & Bell (1934) approach.  The model is designed to predict, through 
simulations, the effects of different fishing pressure scenarios on a single population, in terms 
of different metrics and indicators. Removals are simulated on the basis of the total mortality 
rate modulated using harvesting pattern and a fishing activity coefficient. Aladym can work 
in absence of fishery-dependent data, although its predictive capability of real catch levels 
can be verified using information on commercial catches or fishing activity per month. 
 
From the Aladym core model three complementary, but independent, tools have been 
derived:  
• the quasi-deterministic dynamic tool named Aladym-r; 
• the tuning tool Aladym-z; 
• the stochastic dynamic tool named Aladym-q.  
The core Aladym model is described in this chapter together with Aladym-r and Aladym–z, 
while Aladym-q is described in the following one.  

General assumptions 
The basic assumptions of the model are: 
• natural mortality as estimated reflects the rate of decline of a population from all causes 

excluding fishing; 
• total mortality Z reliably reflects the decline of ages/sizes in the population, including the 

effects of different fishing gears; 
• the growth, the natural mortality, and the maturity parameters are assumed constant over  

time; 
• given the small time interval (1 month) between cohorts the effect of the spreading of the 

lengths with respect to the ages can be neglected. 

Derivations 

The quasi-deterministic dynamic tool named Aladym-r 

General framework 
The model is designed to simulate population dynamics of a given species accounting for 
differences by sex in growth, maturity and mortality. All the quantities are calculated as 
vectors with a time step Δt (time slice=1 month).  An operational framework of the Aladym-r 
model is shown in fig. 5.2.1. Step A) regards the input and initialization. In order to generate 
an unbiased initial population, the number of runs specified by the user (e.g. 100) is 
performed in this step, randomly varying the recruitment, the growth and the size-at-maturity 
parameters according to the values and distributions specified by the user. The user can 
choose among the following distribution type: log-normal, normal, gamma and uniform.  For 
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the parameter t0 a uniform distribution is associated by default.  Two populations are 
generated: the exploited (where total mortality is acting) and the unexploited one (where 
natural mortality only is acting).  
 
The obtained initial populations enter in the start loop (or seed run) (step B in fig. 5.2.1), 
where the dynamics are formulated to follow the evolution of several cohorts over a monthly 
scale. Here the number of recruits entering in the population is generated from a stock-
recruitment relationship. Alternatively, it is given as an input vector. In both cases, a uniform 
variability for the obtained number of recruits can be set by the user. The start loop runs for a 
number of years that is a multiple of the two sex life-spans. This step aims to eliminate the 
artefacts in the initial population due to the use of an equilibrium model in the initialization 
step. After this phase, the simulation loop starts and runs over the period required by the user 
(step C in fig. 5.2.1) generating the outputs (step D in fig. 5.2.1).  

Model components 

Growth 
The growth process is modelled using a von Bertalanffy growth function: 
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For each age (time step Δt = 1 month) length is calculated using the input parameters L∞, K 
and t0. The average length in the time interval (t, t+∆t) is calculated as: 
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The weight at average length, for each age, is calculated from the length-weight relationship 
in the form: b

ageage LaW = ; with a and b as input parameters. 

Population 
The population dynamics is formulated following the simultaneous evolution of several 
cohorts at monthly scale through the exponential population decline model, both in absence 
(1) and in presence (2) of fishing mortality: 
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used respectively in the form (3) and (4): 
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where j indicates the cohort, t the time, Z, M and F the total, natural and fishing mortality 
respectively. (Notice that in any formula where j, age and t are present, it is assumed that age 
represents the age of the cohort j at time t). 
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Maturity 
Maturity Mat is a function of the length L and is calculated following an ogive model (Quinn 
and Deriso, 1999):  
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where r is the ogive slope and Lm50% is the length at which 50% of fish mature. 
The proportion of mature fish at age is computed as: 
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where the maturity range Lm75%-Lm25%, is related to the ogive slope. 

Biomass 
The biomass (Bj) and the spawning stock biomass (SSBj) of the cohort j at time t are 
respectively computed as: 
 

agejtjt wNB ⋅= ,, ; 

ageagejtjt MatwNSSB ⋅⋅= ,,  

 
Analogously, the unexploited biomass (UBj) and the unexploited spawning stock biomass 
(USSBj) of the cohort j at time t are calculated as: 
 

agejtjt wUNUB ⋅= ,, ; 

ageagejtjt MatwUNUSSB ⋅⋅= ,,  

 

Initial recruitment and stock recruitment relationship 
During the step A) (fig. 5.2.1) the initial number of individuals in the population are from 
estimates of recruitment independently obtained from e.g. trawl surveys or other sources.  
These numbers randomly selected for each of the e.g. 100 runs (see also the general 
framework paragraph) are used to initialize the population. Successively (step B and C in fig. 
5.2.1), the number of individuals entering in the population can be a vector or is estimated 
from one of the following user selected stock-recruitment relationships:  
 
Beverton & Holt (1957):  
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Ricker (1954):  
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Shepherd (1982): 
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Barrowman & Myers (2000): 
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R and S represent the number of recruits and spawners respectively, whilst a, b, c, 

*,, Sδα are the model’s parameters. Uniformly distributed random variations can be applied 
by the user to the number of offspring (from the vector or stock-recruitment relationship). 
 
The number of the events (on monthly basis) generating the offspring is an input of the 
model.  The population of spawners generating the recruits is calculated by summing up the 
number of individuals of the different age classes of the different cohorts occurring in the 
population one or more (depending on the biological features of the species) months before 
the offsprings are produced. Thus this quantity is calculated as follows: 
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where jtSSN ,  represents the number of mature females at time t, of the cohort j: 

agejtjt MatNSSN ⋅= ,, . 

Mortality 
The natural mortality can be constant for each age/length, or a vector by age/length 
calculated outside the model and used as input. Alternatively, it is estimated inside the model 
from the Chen and Watanabe equations (1989):  
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The two parameters of the Chen and Watanabe model are t0 and K. The asymptotic length 
(L∞) is not necessary, but t0 cannot be equal to 0 (otherwise the parameter tM cannot be 
defined). The quantities a0, a1, a2 and tM cannot be strictly considered as parameters of the 
model, as they depend on t0 and K. The parameter tM represents the age beyond which the 
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contribution of the fish of a given cohort can be considered negligible. If parameters are 
consistent the relationship between age and natural mortality shows a “bath tube” shape. 
 
The fishing mortality rate F(L) is modelled for each cohort using the following general 
equation (Sparre and Venema, 1998): 
 

)()( LSFLF axm ⋅=  
 
where Fmax is the maximum fishing mortality and )(LS  the proportion of retained fish.  In 
Aladym the fishing mortality rate is calculated as  
 

actaxm fLSFLF ⋅⋅= )()(  
 
where maximum fishing mortality (Fmax) is calculated as 
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using the input values of QZ (a Z proxy) and where Mmin represents the minimum value that 
the M vector assumes. As an alternative option, Fmax can also be a user selected input to be 
set for each month. In addition, a fishing activity coefficient (fact) is introduced in order to 
consider the possibility of a fishing ban or changes in fishing effort throughout time. 
The value of QZ by sex can be assumed, as a first order approximation, numerically equal to 
the value of Z observed that is obtained from estimations outside the simulation model (e.g. 
from trawl-survey). A better approximation of QZ is obtained using the tool Aladym-z (see a 
later paragraph). 
 
In the model, the probability of selection )(LS  of the cohort j is calculated at time t from one 
of the two following user-selected relationships: 
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where L50%, L75% and L25% are the selectivity parameters and D50%, D25%, D75% the de-
selection parameters of the model.  The total mortality Z at time t for the cohort j is thus 
computed as 
 

jtjtjt MFZ ,,, +=  
 
that is the value acting on the population in the model computations. 
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The biomass of individuals of the cohort j at time t death for all causes (BPt,j) is computed as 
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while the biomass of those dead from all causes excluding fishing (BNDt,j) is computed as 
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Harvest control rules 
The simulation approach can be used as a tool to convert survey biological information and 
relative assessment into quantitative HCRs. The options implemented in the simulation 
model are based on the following aspects: QZ, gear selectivity (size at first capture L50% and 
selection range) and fishing activity (alone or in combination). These three are inputs that can 
be used to simulate different exploitation scenarios. The effects of HCRs (selectivity and 
fishing activity) are then analysed in terms of the sustainability of the population in the long-
term. For example, the ratio between the mean spawning stock biomass and the mean 
unexploited spawning stock biomass (SSB/USSB, output) is also estimated for each 
harvesting scenario.  
 
A vector of yield (Y) by time is also simulated, estimating the catch (C) according to the 
following general equation (Gulland, 1969): 
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where tΔ  is the time to which the catch is referred.  Thus the catch (Yield) in the time 
interval (t, t+∆t) is computed in Aladym as (Sparre and Venema, 1998): 
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Software 
Aladym is written in the R language and licensed as open source under GPL2.  The data and 
parameters feeding the model can be easily entered using an excel data sheet. The results of 
the simulation are stored into three Export files (.din for inputs, .dou for outputs, .RData for 
the R workspace) and saved in the same directory where R is started using the basename of 
the input sheet.  
 
To give an idea of the running time, Aladym-r requires about 25 seconds (assuming 40 years 
of start loop and 20 years of simulation) with a Intel (R) Pentium (R) personal computer with 
a processor of 1.70 GHz and 1 GB RAM.  The tool Aladym-z requires about 2.6 hours 
(assuming 40 years of start loop and 20 years of simulation) with the same computer.  The 
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software can be downloaded from the Fisboat web-site, where also a detailed description of 
the input sheet for user help is available. 

Inputs  
Input parameters to the Aladym-r model are:  
• von Bertalanffy growth parameters by sex with associated variability,  
• length-weight relationship parameters by sex; 
• maturity ogive parameters by sex (Lm50% and Lm25%-Lm75% range); 
• natural mortality by sex (a constant value or a vector); 
• seed values (minimum, maximum, ln-mean and ln-standard deviation) of recruitment by 

sex;  
• proportion of offsprings entering in the stock by month;  
• stock-recruitment relationship parameters or a vector of recruit numbers by month both 

with associated variability; 
• time elapsing from spawning to birth;  
• sex-ratio (female/total) of offsprings; 
• Fmax by month (option 2) or from the model (option 1);  
• QZ by sex;  
• selection ogive parameters (2 options) of the gear used by the fleet (L50% and L25%-L75% 

range, D50% in case of the selectivity option 2);  
• fishing activity coefficient by month (0, in case of absence of fishing activity). 
 

Outputs  
The outputs automatically produced by the simulations of Aladym-r can be summarised in 
the following items: 
• Export data file (.dou): 
• exploited and unexploited population by sex, per month and age; 
• exploited and unexploited biomass by sex, per month and age; 
• exploited and unexploited population of females belonging to the spawning stock per 

month; 
• total mortality Z calculated by the model for females, males and the whole population in 

each month and year of the simulation as follows (Sinclair, 2001): 
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• exploited and unexploited biomass per month; 
• exploited and unexploited spawning stock biomass per month; 
• ratio between exploited and the unexploited spawning stock biomass per month; 
• average length and age of exploited and unexploited populations per month; 
• average length and age of exploited and unexploited spawning populations per month; 
• yield in tonnes per month; 
• average length and age of catches per month; 
• fishing mortality per month calculated as; 
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where F
jttN ,Δ+  is the number of survivors at the time t+Δt under the hypothesis that only 

fishing mortality is acting; 
• biomass of natural losses and total biological production per month. 
 
Plots per year of the outputs listed from items 4 to 13 are also produced.  Some other outputs 
are also made available to the user: 
• average length at age and age by sex; 
• natural mortality at age/length by sex; 
• weight at age/length by sex; 
• proportion of mature individuals at age/length by sex. 
These outputs help the user to check the results obtained from the sub-models, in particular 
those related to the VBGF, the length-weight relationship, the natural mortality, and the 
maturity.  

Practical guidelines 
The Aladym core model does not make any fixed or hidden (from the user) assumption about 
the values of the parameters describing the behaviour of the equations on which the model 
itself is built.  The user is allowed to (and needs to) input all the parameters involved: whilst 
this makes the model highly flexible in adapting to different species/environments it loads 
the user with the responsibility to validate each single value and to assess the coherence as a 
whole.  Very few checks are foreseen at the moment to supervise the consistency of the data 
supplied: often it is a critical analysis of the results which spots such consistency. The checks 
guarantee the positivity of Fmax, of length at t0 and a sex ratio between 0 and 1. 
 
The model is extensively based on a closed form solution to the dynamical equations it 
solves.  Thus two key options, both related to the early phase, are available for tuning: the 
‘Multiplier of Life-span’ which controls the amount of years that must be simulated in order 
to cancel the artefacts from the equilibrium model used to initialise the population; and the 
‘Number of Run for seed randomization’ which sets the number of samples to be taken in 
order to derive the average values for the growth and population parameters. For both 
parameters the rule is: bigger is better, however the default values (1, 100) are a reasonable 
choice. 
 
One of the parameters highly influencing the behaviour of the model is QZ which, however, 
does not have an immediate counterpart but can be naively associated to the total mortality Z. 
A specific tool (Aladym-z) has been developed which, starting from the observed values of Z 
and the description of the life and population traits, is able to calculate values of QZ which 
better approximate the given scenario.  Starting from the Z_observed, Aladym-z iterates the 
model modifying, in each run, the amplitudes of the QZ waveforms.  It stops when the Least 
Square convergence criteria are met. 

Sensitivity 
The extensive number of simulation runs performed has shown that the model behaviour is 
influenced by the consistency between the set of life-history parameters and the population 
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dynamics. The model results are thus expected to be particularly sensitive to the stock-
recruitment relationship and natural mortality.  

Strengths/weaknesses 
In Aladym the following points can be considered the strengths: 
• the model is designed to work in the absence of fishery-dependent information; 
• the model is built using separated components that give it enough flexibility to account 

for the use of different equations; 
• the model allows the population dynamics to evolve in a very detailed time scale, thus 

permitting analysis of fluctuations within the year; 
• the detailed time scale allows modelling the effects of the harvest control over the year; 
• the model allows input of natural mortality varying by age/length, and is thus able to 

allow for species exploited at an early phase. 
 
The following points can be considered as the weak ones: 
• the model does not account for environmental changes, such as those related for example 

to temperature variations, or food availability; 
• the life-history traits that are used for modelling the population dynamics (e.g. growth, 

natural mortality, maturity) are assumed stable along the time and not to be density 
dependent; only direct effects of the fishery on the population are considered;  

• the model does not include components of spatial behaviour; 
• harvesting scenarios based on the control of the total catches are not foreseen; 
• the user should be aware of the range of validity of the sub-model parameters such as 

those related to the stock-recruitment relationships. 
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Figure 5.2.1.  Scheme of the Aladym-r tool. R=recruitment; w=individual weight; Sel=selectivity; 
Mat=maturity; M=natural mortality; F=fishing mortality, Z=total mortality; N=exploited population, 

UN=unexploited population, B=exploited biomass, SSB=exploited spawning stock biomass, UB=unexploited 
biomass, USSB=unexploited spawning stock biomass, S-R=stock-recruitment relationship, Y=yield, t=time, 

j=cohort. 

C) 
Simulation 

loop 

[ ] nt
mjjtZZ ,1

,1,
=
== [ ] nt

mjjtMM ,1
,1,

=
== [ ] nt

mjjtFF ,1
,1,

=
==

[ ] nt
mjjtNN ,1

,1,
=
== [ ] nt

mjjtBB ,1
,1,

=
== [ ] nt

mjjtSSBSSB ,1
,1,

=
==

[ ] nt
mjjtYY ,1

,1,
=
==

[ ] nt
mjjtUBUB ,1

,1,
=
==[ ] nt

mjjtUNUN ,1
,1,

=
== [ ] nt

mjjtUSSBUSSB ,1
,1,

=
==

A) 
Input and 

initialisation 
 

i e 100 runs

S-
B) 

Start loop 
(seed run) 

i 20

R

N UN F Z Mw Sel Mat 

 

…

N 1,1 N 1,2 … N 1,m

N 2,1 N 2,2

N 3,1 N 3,2

N 4,1 N 4,2 … …
…

N n,1 … N n,m

 UN 1,1 UN 1,2 … UN 1,m

UN 2,1 UN 2,2

UN 3,1 UN 3,2

UN 4,1 UN 4,2 … …

…
UN n,1 … UN n,m

D) 
OUTPUTS 

SSB/USSB Y LC egaC

B SSB L ega LSS egaSS
UB USSB LU egaU LUSS egaUSS
Z 



5. METHODS 

 75

5.2.2 Estimating indicators and reference points 
Lembo G., A. Abella, F. Fiorentino, S. Martino, and M.T. Spedicato 
COISPA Tecnologia & Ricerca, Bari, Italy 

Introduction 
Aladym-q adds to the same mathematical model of Aladym-r the capability to deal with the 
stochastic representation of some input parameters, in order to evaluate the corresponding 
distribution functions of the output variables using a MonteCarlo approach. This feature aims 
to build a procedure to help identification of indicators and/or reference points, associating a 
confidence interval with them. 

Derivation  

The stochastic dynamic tool Aladym-q 
The stochastic dynamic model defined as Aladym-q follows the same basic formulations as 
Aladym-r. The main difference consists in modelling the uncertainty of estimates related to 
the initial recruitment, growth and maturity traits of the population through stochastic 
processes.  Moreover, a uniform distribution is applied to the number of recruits generated by 
the stock-recruitment relationship. In addition, probability distribution functions (pdf) 
selected by the user are applied to the growth parameters K and L∞, and to the maturity 
parameters. This makes Aladym-q more adaptable for estimating the probability associated to 
metrics, indicators and reference points.  
 
An operational framework of the Aladym-q is in fig. 5.3.1. The step AA) concerns the input 
and initialization. Given the parameters of the identified pdfs a first random realization is 
made in this step. Then the population evolves in the steps BB) and CC). These steps are 
reiterated for a number of realizations, sampling at each run a new set of parameters from the 
pdfs. In the output step pdfs and cumulative pdfs are generated, the latter calculated according 
the following general formulation: 

( ) χχ dpdfxXPXf
x

∫
∞−

=<= )()(  

Software 
Aladym is written in the R language and licensed as open source under GPL2. The data and 
parameters feeding the model can be easily entered using the same excel data input sheet as 
Aladym-r. The differences regard the number of realizations to be performed (user selected 
and mandatory for Aladym-q) and the parameters of the pdfs associated with growth and 
maturity, that for Aladym-q operate also in the simulation loop.  The results of the simulation 
are stored into three Export files (.din for inputs, .dou for outputs, .RData for the R 
workspace) and saved in the same directory where R is started using the basename of the 
input sheet.  
 
To give an idea of the running time, using a Intel (R) Pentium (R) personal computer with a 
processor of 1.70 GHz and 1 GB RAM, Aladym-q might requires 572 seconds for 100 
realizations, ∼1.5 hours for 1000 realizations and about 17 hours for 10000 realizations 
(assuming 40 years of start loop and 20 years of simulation).  The software can be 
downloaded from the Fisboat web-site, where also a detailed description of the input sheet 
for user help is available. 
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Inputs  
As regards the inputs, besides those already mentioned for Aladym-r, Aladym-q requires: 

• the number of realizations;  
• the parameters of the pdfs. 

Outputs 
The outputs automatically produced by the simulations of Aladym-q can be summarised in 
the following items: 
• Export data file (the quantities are related to each realization): 

1. exploited and unexploited biomass in tons per month; 
2. exploited and unexploited biomass of spawners in tons per month; 
3. ratio between exploited and unexploited spawning stock biomass per month; 
4. Z calculated by the model combined for sex per month and by sex per year; 
5. QZ (the input values) by sex; 
6. average length and age of exploited and unexploited populations per month; 
7. average length and age of exploited and unexploited spawner populations per month; 
8. F per month; 
9. yield in tons per month; 
10. average length and age of the catches per month; 
11. biomass of natural losses and total biological production in tons per month. 

• Plots of the pdfs and the cumulative (cpdfs) are interactively produced per year for the 
same items listed above.   

• Some other outputs are also made available to the user: 
12. average number of recruits at each realization;  
13. growth and maturity parameters by sex at each realization. 

 
These outputs help the user to check the results from the sub-models related to the VBGF, 
the maturity, and the recruitment. In addition, they also allow the outputs at each realization 
to be tracked with the related key-inputs.  
 

Practical guidelines 
The same considerations that were developed for Aladym-r hold for Aladym-q.  A new 
parameter is introduced for tuning the quality of the output pdfs: the number of realizations. 
This parameter should be set so as to account for a trade-off between the running time and 
the target confidence level. Experiments showed that values in the range from 1000 to 10000 
give an error level varying from about 6-7 to ∼1%. These confidence levels are well below 
the precision by which most of the input parameters are known. 
 
As regards sensitivity and the strengths/weaknesses of the models, similar consideration as 
were developed for Aladym-r can be applied to Aladym-q, although the latter tool has the 
advantage of including stochastic effects in some of the key life-history traits. This 
stochasticity masks the effects due to uncertainty on the knowledge of input data and of their 
relationships. 
 

References 
See section 5.2: Simulating population dynamics. Aladym model. 
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Figure 5.3.1. Scheme of the Aladym-q tool. pdf=probability distribution function; K, L∞ growth parameters, 
R=recruitment; w=individual weight; Sel=selectivity; Mat=maturity; M=natural mortality; F=fishing mortality, 
Z=total mortality; N=exploited population, UN=unexploited population, B=exploited biomass, SSB=exploited 
spawning stock biomass, UB=unexploited biomass, USSB=unexploited spawning stock biomass, S-R=stock-
recruitment relationship; lengthaverage=L ; ageaverage=ega ; SS=exploited spawner’s population; 

USS=unexploited spawner’s population; C=capture in numbers; Y=yield, t=time, j=cohort.  
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5.3 Indicator time-series methods.  

5.3.1 Nonparametric method for determining recent trends 
Verena Trenkel  
Ifremer, Nantes, France 

Introduction 
The most commonly used method for determining the direction of changes in estimated 
indicator time series is fitting linear models and then using the sign of the slope if it is 
significantly different from zero  ((e.g.Trenkel and Rochet 2003). This method is reliable for 
determining long term time trends. However, it is less satisfactory for short term time trends. 
Trends might not be linear and inter-annual variability in estimated indicators can be strong 
enough to mask short term changes. Furthermore, if only the trend over the most recent years 
is considered, the overall evolution is not taken into account, for example whether the 
indicator values are among the lowest or highest of the available series or whether the 
indicator has a tendency to fluctuate randomly with a certain phase. Consider the fluctuations 
of plaice ln-abundance estimated for the Southern North Sea (Fig. 5.7.1, left panel). The 
population seems to have been fluctuating randomly over the course of the 23 years. So 
looking at this picture one would probably conclude that the recent years are not any 
different from the whole time series. However, depending on how many recent years are used 
for estimating a linear trend, a positive, negative or no trend will be found. Similarly for dab, 
although ln-abundance has been decreasing in the most recent years, overall the population 
levels remain well above that at the beginning of the series. So, it seems desirable to include 
the whole time series in the assessment of the dynamics of the most recent years.  
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Figure 5.7.1. Time series of ln-abundance for plaice and dab in Southern North Sea based on IBTS data. The 

continuous line is generalised additive model (GAM) fit. The broken lines are 95% confidence bands for this fit 
based on a parametric bootstrap of annual indicator estimators. 

 
 
In this document a method is proposed to estimate the direction of recent changes making use 
of first and second derivatives of smoothed indicator time series and the position of the most 
recent years with respect to the full time series. The first derivative, which is actually the 
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local slope (tangent) at each point of a function, here each year, describes the dynamics of the 
indicator changes. In contrast, the second derivative describes the changes in the slope. A  
positive second derivative indicates that the slope is increasing while a negative second 
derivative means that the slope is decreasing. A location at which the second derivative is 
zero is called a change point as at this point the dynamics change from accelerating to 
decelerating, i.e. the slope gets smaller from this point onwards, or vice versa. The slope will 
be zero when either a maximum or minimum is reached. Figure 5.7.2 illustrates the signs of 
the first and second derivatives. The proposed method is described in details in the next 
section. 
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Figure 5.7.2. Diagram showing the signs of the first and second derivative of an indicator time series used for 

determining the direction of change. 

Method 
The proposed method consists of several steps which are  

1. fit a generalised additive model to the time series in order to obtain a smoothed series; 
2. calculate first and second derivatives for the smoothed time series for all years 

(including years with no data); 
3. determine direction of change in recent years using a combination of criteria for the 

smoothed series as well as the first and second derivatives of the smoothed series. 
 
To obtain smoothed indicator series, generalised additive models (GAM) are fitted with year 
as a cubic regression spline and automatic selection of the degrees of freedom (minimum 3) 
using the mgcv package in R (R development Core Team 2003) developed by Wood (2000). 
 
As spline models are twice differentiable, first and second derivatives of the smooth series 
can be calculated for every year of the time series using an approximation based on first and 
second differences, as used by Fewster et al. (2000).  
 
The first derivative of indicator I in year t is approximated by the first difference 
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The second derivative is approximated by the sixth difference 
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For the third (t=3) and two before last years the fourth difference is used to approximate the 
second derivative 
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Finally, for the second (t=2) and one before last the second difference is calculated for the 
estimating the second derivative 
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For obvious reasons the first and second derivatives cannot be estimated for the first and final 
year of the time series. 
 
In order to determine whether the estimated first and second derivatives are significantly 
different from zero for a given year, i.e. 0)('ˆ ≠tI  and 0)(''ˆ ≠tI  for i=1,...T, a parametric 
bootstrap is carried out. For this, indicator time series are created by resampling each data 
point (year) ))(),((~)( ttINtI b σ  from a normal distribution with, as mean, the estimated 
indicator value for year t, I(t) and, as standard deviation, its estimated standard deviation σ(t). 
A separate GAM is then fitted to each bootstrap series I(1)b...I(T)b, b=1,...B, using the same 
degrees of freedom (degree of smoothness) as was found optimal for the original indicator 
time series. Subsequently, for each bootstrap sample, first and second derivatives are 
estimated by year. This provides the distribution of first and second derivatives for each year 
based on which the 2.5 and 97.5 percentiles are calculated. If the value zero is included in the 
interval formed by the 2.5 and 97.5 percentiles, which is actually a 95% confidence interval, 
the derivative of the given year is not significantly different from zero and the indicator 
variable for the derivative is set to zero, otherwise the sign of the derivative is either positive 
(1) or negative (-1) depending on whether the values within the confidence interval are all 
negative or positive. The result of this test is a time series of an indicator variable for the first 
derivative which is either 0, 1 or -1. Similarly for the second derivative. 
 
In order to determine the direction of recent changes in indicator time series, the indicator 
variables with the signs of the first and second derivatives are combined in a decision rule 
(Table 5.7.1). In addition, the location of the minimum and maximum value in the time series 
is used in order to put the most recent years into the perspective of the whole time series. If 
the maximum is not found within the last three years and the annual slopes (first derivative) 
are predominantly negative and annual second derivatives are negative or zero in the last five 
years (no change point appears with sign of second derivative passing from –1 to +1), the 
direction of change is declared as recently decreasing. The second derivative is used to 
establish whether an improvement has already taken place most recently. Similarly for a 
recently increasing series, the minimum should not be within the last three years, the average 
of the annual slopes should be positive (apart from one year) and no change for a decreasing 
trend (sign of second derivatives positive) should have occured during the last five years. For 
all other cases there is no indication for a change. These decision rules are proposed based on 
empirical tests, however they are by no means prescriptive. The important point is the 
principle, i.e. the combination of different measures of the dynamics of a time series, 
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minimum, slope and change points. In particular the time spans considered, which is five 
years for the first and second derivatives and three years for the location of the maximum and 
minimum, are easily adapted for a  particular study. 
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Table 5.7.1. Decision rules used to determine direction of recent changes for an indicator time series based on 
first and second derivatives of smoothed indicator time series.  ym = number of years to consider for 

minimum/maximum; e.g. ym= 3.  yc = number of years to consider for first and second derivatives, e.g. yc= 5 
    

Decrease 
 

Increase 

1. Maximum value before final ym years  
 
AND 
 
2. Signs of annual slopes for final yc  years negative 
or at most 0 for 1 year  
 
AND 
 
3. Sign of annual second derivatives during final yc  
years negative or zero (persistence of decrease)  

1. Minimum value before the final ym years  
 
AND 
 
2. Signs of annual slopes during at least final yc years 
positive or at most 0 for 1 year 
 
AND 
 
3. Sign of annual second derivatives during final yc  
years positive  (persistence of increase) 

 
 
 
For comparison purposes, linear time trends over the whole data series and the last five years 
are also calculated. 

Example: cod in North Sea 
As an example the method was applied to the indicator table for cod in the North Sea based 
on IBTS data. Fig. 5.7.3 gives the smoothed indicator time series. The direction of recent 
change assessed by two methods is indicated in the header of each figure. The proposed 
method is referred to as ‘derivatives’. Thus the diagnosis obtained with the proposed method 
is that ln-abundance and L50 maturity are decreasing, while mean length and the length 
quartiles are all increasing. Thus all signs points towards a deterioration of this cod stock. In 
contrast to the proposed method, linear time trends over the most recent five years were only 
signficant (α=0.05) for the ln-abundance time series.  
 
The total mortality estimates Z and the length quartiles L25 and L75 in Fig. 5.7.3, are varying 
interannually more than seems plausible biologically. As a consequence the smooth function 
fits (cubic splines) might not be considered representative for the temporary evolution of 
these indicators and the resulting diagnoses might be considered unreliable. This example 
points out the need to carefully select the indicators and to evaluate their reliability before 
using them for any assessment purposes because the results obtained with the proposed 
method will entirely depend on the suitability of the GAM fits.  
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Figure 5.7.3. Indicator time series of North Sea cod with cubic spline model. Assessment of recent direction of 
changes in figure headers using the proposed method (‘derivatives’) and linear trend estimation for the final five 

years.  
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Software 
The software for the non-linear estimation procedure based on first and second derivatives 
can be downloaded from http://www.ifremer.fr/drvecohal/fisboat/index.htm.   To run it: 
 

1. Copy the function “FunctionsTimeChangeDerivatives.R” and script 
“ScriptTimeChange.R” into same folder as the data table. 

2. Edit line 10 in script replacing file name,  
e.g. indicest<-read.table("codNS_tab2_wp2A.txt",header=T,sep="\t",as.is=T) 

3. Edit line 28 to select the time horizon for first and second derivatives 
e.g. lastn=5 

4. Edit line 31 for time horizon for maximum and minimum values 
e.g. lastnmin=3 

5. Run edited script. 
6. Results are obtained as a table called Trendestimates.txt and as smoothed time series 

plots for each indicator 

Example results for North sea cod 
 
1. Trendestimates.txt 
 
Area Species Indicator LinearSlop

e 
PvalueAll LinSlope

LastYear
s 

PvalueLast DiagnosL
inearRec
ent 

Diagn
osNo
nLine
arRec
ent 

NorthSea GADUMOR ln_survey_index -0.067 0.00014 -0.219 0.04792 -1 -1 
NorthSea GADUMOR Lbar 0.101 0.61485 0.996 0.47505 0 1 
NorthSea GADUMOR L25 0.051 0.80099 -1.09 0.51169 0 1 
NorthSea GADUMOR L75 0.161 0.55643 2.73 0.13226 0 1 
NorthSea GADUMOR L50.maturity -1.525 0 -3.657 0.06658 0 -1 
 
Explanation of column names: 
LinearSlope: Linear slope over whole time series 
PvalueAll: p-value for linear slope over whole time series 
LinSlopeLastYears: Linear slope for most recent years  
PvalueLast: p-value for above linear slope 
DiagnosLinearRecent: sign of slope for most recent years if significant (p-value <=0.05) 
DiagnosNonLinearRecent: direction of change using proposed method (decrease =-1, 
increase=1, no change =0) 
 
2. Figures  
e.g. ln survey index.wmf (fig. 5.7.4). 

http://www.ifremer.fr/drvecohal/fisboat/index.htm�
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Figure 5.7.4.  Ln-transformed survey time series with fitted smoothed model (GAM). Header provides direction 
of changes as found by fitting a linear slope over the 5 most recent years, and by the proposed method, referred 

to as ‘derivatives’. This information is repeated in the table. 
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5.3.2 Assessing the power to detect future trends 
Hans Bogaards, Charlotte Deerenberg, Gerjan Piet 
Wageningen Institute for Marine Resources and Ecosystem Studies 
IJmuiden, The Netherlands 
 

Introduction 
An assessment of the power of a survey to detect future trends in candidate indicators is 
obviously an important task before those indicators are selected for use in some kind of 
fishery management programme. Formally, the power of a statistical test is the probability of 
not making a type II error, where a type II error is defined as accepting the null hypothesis 
when the alternative is true. Within the context of a monitoring program, power can be 
interpreted as the probability that a particular trend change will be detected.  This note 
describes a method for estimating the power of a survey to detect future, linear trends given 
standard modelling assumptions.  Software in R available from the FISBOAT website is also 
described. 

Method 
Power calculation first requires a specification of the testing procedure to be used, together 
with the significance level α (the probability of making a type I error: rejecting the null 
hypothesis when it is true) of the test. Furthermore, it requires the definition of a null 
hypothesis H0 and an alternative hypothesis H1. 
 
To provide a generic power calculator for the evaluation of candidate indicators, it is here 
assumed that the time series of an indicator can be described by a stochastic linear model 
with an additive normally distributed error term. Observations are assumed to be derived 
from annual sampling schemes. In the case of missing observations, the analysis is restricted 
to the longest consecutive stretch of non-missing values in the time series. The slope of the 
historic trend line is estimated by simple linear regression analysis, which implies that the 
residual variance is assumed to be constant and has no autocorrelation. The extent to which 
these assumptions are violated should be judged by the user. Visual inspection of the time 
series with its trend line and residuals is imperative. 
 
The testing procedure concerns the slope of the trend line for a specified number of future 
years of follow-up. The test statistic T is defined as the difference between the observed slope 
of the future trend line and its anticipated value under H0, divided by the standard error of the 
estimated slope parameter. If the variance of observations about the linear trend will remain 
constant, T will follow a non-central t-distribution, the non-centrality parameter being equal 
to the slope parameter under H1 minus its value under H0, divided by its standard deviation 
under H0. From this, it follows that the power of a one-sided test is the probability that T is 
more extreme than some critical value c. The power of a two-sided test is the overall 
probability that T is more extreme than either c or –c.  Critical values are determined by the 
significance level of the test. Typically, critical values in a two-sided test with α = 0.05 
correspond to the 2.5th and 97.5th quantiles of a central t-distribution. 

Final comment 
It is assumed that the residual variance is constant throughout, not only for the duration of the 
historic time series, but also for the interval over which the power of an indicator is to be 
evaluated. Transformations to stabilize the variance and to make the trend linear may be 
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considered in advance, after which power should be evaluated on the transformed time series. 
In addition, the power of a particular indicator will be underestimated if intervention 
strategies tend to reduce its randomness, or overestimated if the opposite is true. 

References 
Gerrodette, T. 1987. A power analysis for detecting trends. Ecology, 68: 1364–1372. 
 
Nicholson, M.D. and Jennings, S. 2004. Testing candidate indicators to support ecosystem-
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community metrics. ICES Journal of Marine Science, 61: 35–42. 
 
Piet, G.J. and Jennings, S. 2005. Response of potential fish community indicators to fishing. 
ICES Journal of Marine Science, 62: 214–225. 

Software 
After the function templates have been downloaded from 
http://www.ifremer.fr/drvecohal/fisboat/index.htm and sent to R, the power of a candidate 
indicator can be obtained via a call to the function linear.trend(). This function requires at 
least two arguments: 
 
file  tab-delimited text file to be used, e.g. “codNS_tab2_wp2a.txt” 
var  candidate indicator to be evaluated, e.g. “L50.maturity” 
 
If the candidate indicator has been calculated separately for each age-class (for example, the 
wp2a spatial indicators), a third argument is required: 
 
age  age-class to be evaluated, e.g. “A4” 
 
The name for var should correspond to the variable name as provided in the header of the 
requested text file, whereas the name for age should correspond to a value of the variable 
Age. 
 
Additional arguments that may be set optionally by the user are: 
 
dir  directory where file is located (default: working directory) 
h0  slope under H0 (default: continuation of trend line) 
h1  slope under H1 (default: stabilization of trend line) 
alpha  significance level of the test (default: α = 0.05) 
horizon interval over which power is to be evaluated (default: 25 years) 
 
Arguments acting as character strings should be enclosed in quotation marks, e.g. 
 
> linear.trend(file=“codNS_tab2_wp2a.txt”, var=“L50.maturity”, h1=0, alpha=0.01) 
 
Power is calculated both for one-sided and two-sided tests. In one-sided tests, an increased 
slope parameter is anticipated if the historic trend line was decreasing and vice versa. By 
doing so, ecosystem-based management objectives are evaluated more efficiently than in 
two-sided tests, as the latter are more conservative. 
 

http://www.ifremer.fr/drvecohal/fisboat/index.htm�
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Two graphs are output by the R script.  The first shows the time series that is used, together 
with the best-fitting linear trend line, and residuals which are plotted separately. The second 
shows the results of the power calculations, for one-sided and two-sided tests.  Figures are 
also printed to the screen, with oc1 and oc2 denoting one-sided and two-sided test results, 
respectively. 
 
 
 
 
 



5. METHODS 

 89

5.3.3 Statistical Process Control (SPC) schemes 
Benoit Mesnil and Pierre Petitgas 
IFREMER, Nantes 
 

Introduction 
Control charts are part of the statistical process control (SPC) tools routinely used over 
decades to monitor manufacturing processes and signal anomalies in performance. The 
process has some inherent variability and is said to be 'in-control' as long as it remains within 
acceptable bounds. If an anomaly occurs causing a deterioration in quality beyond the 
baseline variability the system is said to be 'out-of-control'. Control charts are graphical 
displays of some summary statistic of the observation data (e.g. an indicator) against the 
order index of the sample (e.g. time), together with reference 'marks' based on the in-control 
mean and variance, that are designed to detect whether a worrisome change in process output 
is indicated by the current data and a fix is required. Since there are costs associated with 
both false alarms and quality losses, the charts' parameters are tuned to achieve a desired 
trade-off between the risk of false alarm and the power to detect changes promptly. 
 
The cumulated sum type of control chart in its 'decision interval' form (DI-Cusum) has been 
selected for this project because it is advocated in SPC textbooks (e.g. Montgomery, 1991;  
Hawkins & Olwell, 1998) for the type of data considered in the survey indicators context. 
Control charts can be designed to monitor changes in mean level (location charts) or in 
variance (scale charts) of process outputs; explanations are only given for location charts 
here. More details can be found in the literature digest made for this project by Mesnil & 
Petitgas (WD) and in the papers cited therein. 

Derivation 
Suppose a suite of observations (individual or group means) xi collected at time i = 1, …m 
and assume that their in-control mean μ and standard deviation σx are known from a pilot 
study or for a reference period. In the following, it is considered that the data are first 
standardised through the transformation zi = (xi-μ)/σx.  
 
The decision-interval Cusum works by recursively accumulating positive and negative 
deviations separately with two statistics: 

[ ]kzSS iii −+= +
−

+
1,0max    

for positive deviations ('one-sided upper Cusum'), and 
[ ]kzSS iii ++= −

−
−

1,0min   
for negative deviations ('one-sided lower Cusum'), with starting values normally set as 

000 == −+ SS . A Cusum chart is obtained by plotting these statistics against i. 
 
The parameter k is usually called the reference value, or the allowance, and is related to the 
size of the smallest shift in the level of x that one is wishing to detect quickly. Note that 
deviations smaller than k are ignored in the recursions above. The decision rule is to declare 
an out-of-control state whenever S+ exceeds the decision interval h or S- falls below –h. The 
values chosen for the parameters h and k (in standard deviation units) determine the 
performance of the control chart; there is no theoretical objection against setting different h-k 
pairs for upper and lower Cusum's if changes in one direction matter more than in the other. 
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The performance of control charts is generally evaluated in terms of their run length. A run is 
the number of sampling events that elapse between the start of the monitoring and the first 
alarm. Run length is a random variable whose probability distribution depends on the process 
and the chart parameters, and it is its expectation – called Average Run Length (ARL) – that 
is commonly used as a summary measure of performance. In many instances the run length 
distribution is very broad and skewed, and it may be misleading to only consider its mean; 
the experts recommend to also look at other percentiles, whenever the distribution can be 
computed. The notation ARL(δ) is used to designate the ARL of an SPC scheme for 
detecting a change of size δ (in σx units) occurring in the process mean level. Thus, ARL(0) 
is the ARL of a scheme when the process actually stays in-control all the time (in-control, or 
IC ARL); yet, due to its inherent variability, an alarm may be raised by chance alone when 
the chart is updated with a new datum. In other words, ARL(0) is the average time until a 
false alarm is raised, which should ideally be large. Conversely, if the mean of the process 
distribution shifts from μ to μ+δ, due to an anomaly the chart should detect this quickly, 
implying a short ARL(δ). Chart parameters can be tuned to achieve the desired compromise, 
as explained in the guidelines below.  

Software 
Two R scripts have been developed to implement a Cusum monitoring scheme: 
CusumTutorial.r is generic, for exploring Cusum charts with 'free-format' time series vectors; 
FBCusumCharts.R is designed to automate the production of standard tables of results for the 
report ('traffic light template'). Both use a set of functions stored in the separate file 
CusumFuncs.r that must be sourced into the user's  R workspace (on first use) as instructed in 
the scripts. The scripts are meant to be run in a stepwise fashion (highlight a line or a block 
and submit to R) and are amply commented to guide the user. 
  
The top part of FBCusumCharts.R deals with each indicator in turn. Note that a logarithm 
transformation is applied to the Survey and Recruit indices (columns 5 and 6); the reference 
period for each case study is 'hard-wired' but can be edited if needed; an indication of an 
appropriate value for the allowance k, based on the mean deviation from the reference mean 
outside the reference period, is proposed but is not coded as a default value. Once the full set 
of indicators has been processed, the bottom part of the script gathers the individual resnam.# 
objects to produce the table of alarms (signed Cusum values above h or below –h) and the 
table of Cusum parameters and saves them to files. 
 
This implementation includes functions to compute in-control or out-of-control ARLs and 
run length distributions of one-sided Cusum for normal data, adapted from a Fortran code by 
F.F. Gan (1993) found on the StatLib JQT archive. They have been checked against the 
values tabulated in various SPC textbooks and articles, and the results match very well. They 
need to be optimised for R, to speed up the computation of RL distributions which requires 
some patience at the moment. 

Practical guidelines 

 A) Cusum design: tuning the chart parameters k and h 
With fisheries survey data, we in general have to analyse time series of one or several 
indicators of population status (control variables). We have one value per indicator per year 
(individual data) with perhaps the precision on the indicator in each year. We distinguish 2 
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phases: Phase I for defining the in-control (IC) period; and Phase II for designing the Cusum 
to signal change from the in-control state with desired performance. 

Phase I 
The task in Phase I is to set the IC or reference process parameters μ and σ. It is a critical 
phase in that the values adopted for these parameters will condition the diagnostic that will 
be made later. Normally, this is an experimental phase where the state of the system is 
closely checked, many measurements are taken and scrutinised, to retain only those that can 
be safely assumed to correspond to a well behaved process. In our case, we will often start 
with existing data collected in the past, and Phase I will essentially consist in the 
definition/choice of an in-control (or reference) period, and using the data in the selected to 
years to estimate in-control parameters μ and σ. The IC period can be defined on various 
criteria, including an analysis of the times series. The IC period is best defined collectively, 
on expert knowledge, as the period in which the population was in a satisfactory state and/or 
showing satisfactory dynamics. For example, within the Fisboat project, the IC period was 
defined collectively during a workshop as the period when the indicator value showed 
"satisfactory" values with low variation (no obvious outlier). Thus, the IC period may not 
necessarily comprise consecutive years. Sensitivity to the IC period should be analysed and 
the IC period may be also re-defined a posteriori. This is consistent with the iterative and 
rejection procedures described in SPC textbooks. 

Phase II 
In Phase II the task is to design (or tune) the Cusum scheme to signal a specified deviation 
from the IC mean with a desired performance, i.e. this is where the chart parameters k 
(allowance) and h (interval) are determined. The choice of k is based on the magnitude of the 
shift δ in the mean that makes "a meaningful impact" on the system, driving it out of control. 
The value of h determines whether an alarm is raised or not (an alarm is triggered when the 
cusum plot crosses the horizontal line at h, or -h or +h for a two sided Cusum). The rationale 
for choosing h is primarily based on minimising the risk of false alarm,  but the ability to 
promptly detect shifts that matter should also be preserved. Setting h, once k is chosen, 
involves Run Length considerations. A four-step procedure is suggested1: 
1. Regarding k, if δ is the shift of interest (in sd units), there is broad support in the literature 

for setting k at half the value of that shift (formal demonstration in Chap. 6 of Hawkins & 
Olwell), and this rule can be safely adopted. The "meaningful" shift  δ can be set after 
analysing the deviations from μ outside the IC period. For instance, the shift to be 
detected can be set to a percentile of these deviations or to their mean. For fisheries 
survey based population indicators, k will take in general a value between 0.5 and 1.5; too 
small values of k should be avoided (Hawkins & Olwell, p. 33). 

2. Using tables or software with a zero value for the shift δ, search for an h that gives 
desirably large IC ARL(0) given k, and thus a low risk of false alarm. Larger values of h 
(and k) lead to larger ARLs. 

3. Because the RL distribution may be quite skewed, consideration of the average RL alone 
may be misleading and, using the function arldis.f in the Fisboat R scripts, the full 
distribution of the in-control RL should be checked. For example, if you choose k and h 
to aim for a "large" IC ARL of 100, and observe a "small" value of 10 samples or less for 
the 25th percentile, it is likely in the actual application of the scheme that more false 
alarms will occur than the large ARL(0) makes you think. If so increase h. 

                                                 
1 Reminder: in all this, we assume the indicator series have first been standardised. 
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4. The h value arrived at in the previous steps may have made you reasonably content with 
the false alarm risk, but you then need to ascertain that the scheme is able to quickly 
detect the shifts you are interested in, i.e. that its out-of-control ARL is small enough. 
Return to the ARL tables or software with a value of 2k for the shift δ, and check that the 
OC ARL(δ) corresponding to the envisaged h is adequately small. In general, it is 
possible to find values of k and h so that the OC ARL does not exceed 3 years. 

 
As pointed out earlier the basic challenge of using and tuning SPC schemes is to find an 
acceptable compromise between the risk of false alarm and the power to detect shifts that 
matter in the state of the system, and it is often necessary to iterate through these 4 steps to 
arrive at that compromise. The notions of "meaningful impact", "acceptable risk" and 
"desired performance" are very much policy issues and have to be decided in partnership 
with managers and stakeholders. 

B) Assumptions and effects of violations 
The main assumptions underlying the statistical properties of Cusum charts are (i) that the 
monitored variable has a distribution from the exponential family; in particular, the run 
length characteristics commonly tabled in textbooks or computed with the R software coded 
for this project are only valid for normally distributed data; (ii) that the in-control process 
parameters are known rather than estimated; and (iii) that the time series of residual variation 
has no correlation in time. Violations of these assumptions all go in the same direction: the 
in-control ARL(0) experienced in practice is shorter than the value computed for the perfect 
case, i.e. the chances of false alarms are larger than expected (e.g. Section 3.7 in Hawkins & 
Olwell; Jones et al., 2004; Lu & Reynolds, 1999; Reynolds & Stoumbos, 2004). Smaller 
values of k (also large h) enhance the robustness to non-normality, but increase the impact of 
estimating the reference mean and sd from the data. An encouraging note: even though a 
Cusum tuned with a given k is optimal for detecting shifts of 2*k standard deviations, its 
performance remains high for actual shifts that are 'not too far' (Hawkins & Olwell, p. 54). 
Time series of survey data population indicators are often short (< 20 years) with marked 
deviations and sometimes show correlation or trend. It is advised to check the distribution of 
the indicator variable as well as its correlation in time. It may be necessary  in some cases to 
transform the variable into a Gaussian or to detrend the time series. The reference period is 
even shorter, and we use noisy data to estimate the IC process parameters. Since all 
departures from the assumptions will result in effective RLs being very different (in general 
shorter) than values publicised for the "clean" case, an ad hoc remedy is to take relatively 
large h values. Conservative advice is to use (k,h) parameters giving large IC RLs: ARL > 20 
years and 25th  percentile of RL distribution > 10 years. When some deviations from μ 
outside the reference period are large in comparison to σ, it may be telling that the variance 
has changed or that the indicator variable is skewed. In that case, starting Phase II with a 
large value of k is advisable. When the value of h is small in comparison to an increasing 
(decreasing) Cusum deviation, it may be telling that there is correlation in time in the 
indicator series. 

C) Strengths and weaknesses 
Control charts have been in operation in many branches of industry since the 1930's and their 
statistical bases have been thoroughly investigated in a huge body of literature (the references 
below are just a tiny sample).They are still a recurrent topic of specialised journals such as 
the Journal of Quality Technology or Technometrics. Applications have been extended to 
environmental surveillance, biomedicine, clinical tests, and public health. The strengths in 
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these domains are that the in-control state is well defined, the monitoring involves numerous 
samples taken at high frequency through rigorous sampling designs, and measurement errors 
are often small. 
  
In contrast, this defines the weaknesses for fisheries applications. Perhaps the main limitation 
is our poor ability to characterise the reference state of fisheries (or of ecosystems) with 
survey data that just span the recent decade(s) in a background of large variability 
compounded by substantial sampling variance (i.e. we do not have a proper Phase I). Keep in 
mind, however, that the reference state does not imply perfect stability; the goal of control 
charts is to spot those events where the state of the system jumps beyond the domain of its 
inherent variability. 
 
A virtue of the Cusum approach is that it does not presume the nature of the change (linear, 
trend or otherwise) and treats positive and negative deviations equally. Cusum charts are best 
suited to detecting small, persistent changes. Anomalies in the system can take the form of 
shifts in the mean and/or changes in the variance of the distribution. Specific control charts 
can deal with both situations. Actually, it is common to combine location and scale charts to 
enhance the detection performance for both small and large shifts (Reynolds & Stoumbos, 
2004). 
 
It has been demonstrated that, among the procedures that have similar in-control ARL(0), the 
Cusum has the smallest expected time until a change is detected when it occurs. This is the 
basis of the rationale for tuning the chart, with priority given to achieving large ARL(0). The 
emphasis on low risk of false alarm has some practical advantage in our application to 
fisheries management and its overly controversial atmosphere; we have learnt to know that 
casting assessment noise straight into fisheries regulations has damaged our credibility and 
our relations with the industry, and a method that explicitly aims to avoid this should help. 
Lastly, the biggest advantage of the Cusum is that it is so simple to implement. Yet, it 
provides a formal framework to establish diagnostics in an objective and replicable way. 

References 
The oft-quoted textbooks 

 
Derman, C. & S.M. Ross. 1997. Statistical aspects of quality control. Academic Press, 
London. 
 
Hawkins, D.M. & D.H. Olwell. 1998. Cumulative sum charts and charting for quality 
improvement. Springer-Verlag, New York. 
 
Manly, B.F.J. 2001. Statistics for environmental science and management. Chapman & 
Hall/CRC, Boca Raton. 
 
Montgomery, D.C. 1991. Introduction to statistical quality control. Wiley, New York. (5th 
Edition 2005). 
 
Whetherill, G.B. & D.W. Brown. 1991. Statistical process control: theory and practice. 
Chapman & Hall, London. 
 
 Articles on SPC methods 
 



5. METHODS 

 94

Gan, F.F. 1993. The run-length distribution of a cumulative sum control chart. J. Quality 
Technology 25: 205-215. 
 
Jones, L.A., C.W. Champ & S.E. Rigdon. 2004. The run length distribution of the CUSUM 
with estimated parameters. J. Quality Technology 36: 95-108. 
 
Lu, C.-W. & M.R. Reynolds Jr. 1999. Control charts for monitoring the mean and variance of 
autocorrelated processes. J. Quality Technology 31: 259-274. 
 
Luceño, A. & J. Puig-Rey. 2002. Computing the run-length probability distribution for 
CUSUM charts. J. Quality Technology 34: 209-215. 
 
Mesnil, B. & Petitgas, P. (WD). Statistical Process Control (SPC) schemes for indicator-
based assessments. A literature review and manual for the Fisboat project, 2006. 30 pp. 
 
Page, E.S. 1961. Cumulative sum control charts. Technometrics 3: 1-9. 
 
Reynolds, M.R. & Z.G. Stoumbos. 2004. Control charts and the efficient allocation of 
sampling resources. Technometrics 47: 409-424. 
 
Scandol, J.P. 2003. Use of cumulative sum (CUSUM) control charts of landed catch in the 
management of fisheries. Fish. Res. 64: 19-36. 
 
Woodall, W.H. & B.M. Adams. 1993. The statistical design of Cusum charts. Quality 
Engineering 5: 559-570. 
 
 

 

 

 

 

 



5. METHODS 

 95

5.3.4 Nonparametric statistical methods for assessing trends. 
John Cotter 
CEFAS, Lowestoft 

Introduction 
This note describes a selection of nonparametric statistical methods thought to be useful for 
assessing trends in fishery statistics or indicators, e.g. abundance-at-age, mean length, 
geostatistical indices, or just about any continuous variable.   The trends referred to here are 
assumed to relate to time but they could also relate to a transect over a spatial dimension.  
The literature on trends is extensive so this note can only provide a modest introduction to it.  
Loftis et al. (1991b) point out that formal statistical methods do not usually reveal trends that 
are not apparent from inspection of the data but they are useful for allowing different data 
analysts to reach similar conclusions from the same data and assumptions.  Several of the 
references cited come from the literature on monitoring of water pollution where the sporadic 
and chaotic nature of variation combined with frequent gaps in the time-series has stimulated 
development of nonparametric methods because of their minimal assumptions.  Fisheries 
scientists typically prefer modelling, i.e. parametric methods for assessing trends in fish 
stocks and have exploited nonparametric methods relatively lightly.  All the same, trends in 
fish stocks could be established with less reliance on assumptions about the data and models 
if nonparametric methods were used.  Furthermore, interest nowadays is shifting from 
estimation of quantities of fish in a single commercial stock to assessment of whole 
ecosystems, a task for which well established, structural models are not always available.     
 
There has been little discussion in the literature of statistical inference in relation to trends.  
This note therefore begins by proposing some points thought to be important.  A variety of 
nonparametric statistical tests tailored for assessing trends is then introduced, some of which 
are easy to calculate with a spreadsheet but limited to providing only the most general 
statements, e.g. the binomial test with the median, and others which are more elaborate and 
specific, e.g. Mann-Kendall's Tau which finds monotonic trends.  Multivariate tests presented 
include Cochran’s Q and the the Dietz-Killeen test.  A spreadsheet accompanying the paper 
illustrates application of each method to a single test set of data, namely a set of abundance-
at-age figures for cod from the North Sea IBTS quarter 1 survey.  There were few problems 
in Excel for the univariate tests once the relevant functions had been discovered (e.g. 
RANK(), MEDIAN(), and BINOMDIST()) although some methods were quite labour 
intensive.  The spreadsheet can be downloaded from 
http://www.ifremer.fr/drvecohal/fisboat/index.htm.  Alternatively, the methods could easily 
be implemented in R (and several already are).  R code is available from the same site for the 
Dietz and Killeen multivariate trend test. 

Inferring about trends 
A distinction is acknowledged here between the true, unknown trend, called the signal, and 
the measures of it made with error, called observations.   Most analyses of trends have to be 
based on the following assumptions: at all times, t, 

• E(measurement error) = 0  
• E[(measurement error at t) * (measurement error at t+∆)] = 0 where ∆ is any lag 

interval, and 
• E(measurement error * signal) = 0. 

 

http://www.ifremer.fr/drvecohal/fisboat/index.htm�
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E() is the operator for statistical expectation.  In words, measurement errors should average 
to zero, have no serial correlation, and be independent of the level of the signal.  Failure of 
any of these assumptions could lead to spurious trends unrelated to the signal. 
 
“Trend” is hard to define more specifically than our intuitive understanding of a general 
movement up or down of an observed variable.  A trend can occur in the observations, in the 
signal, or in both.  Usually we think of a trend as monotonic upwards (or downwards), i.e. 
with every observed value at time t equal to, or higher (or lower) than that at t-1.  However, 
turning points, either real or error-based, are likely to occur too.  Their occurrence in an 
observed series is not necessarily, by itself, an accurate indicator of the position of the turn in 
the signal, or of its magnitude at that point.  For an explanatory analogy of this, consider 
flying over a mountain range and dropping weights at fixed intervals without looking where; 
some might fall on high ground but few, if any, will fall exactly on the turning points of 
height, e.g. the mountain peaks.  Step changes can also occur in time series and may look like 
smooth trends when obscured by observation errors.  Nonparametric methods for inferring 
the location and magnitude of a step are discussed by Pettitt (1979).  The Mann-Whitney 
nonparametric test is another option when the location of the step is known (Lettenmaier 
1976).  The binomial test, see below, would be even simpler. 
 
Statistical tests for trend are affected by the statistical approach adopted.  There are two 
accepted ways of thinking about time-series:  
 

(i) design-based: the signal is assumed to be unique and fixed over any defined 
interval of time; the results of a survey depend on its design.  

(ii) model-based: the signal is assumed to be one of many possible realisations over 
that interval; results of a survey depend on the model fitted to the data.   

 
Under design-based thinking, the null hypothesis of no trend, meaning exactly equal values 
of the signal at all observation points, would seldom be plausible for fisheries data unless the 
locations of observation were extremely close, or all possible causes of variation temporarily 
ceased to exist.  The analogy of the rocky mountain range is again applicable – no two 
observation points along a transect are likely to be at exactly the same height.  Provided that 
there are enough observations, and measurements are made accurately enough, statistically 
significant differences in value will be discovered even though these may not be significant 
in practical terms (Loftis et al. 1991b).  Model-based thinking comes from the other 
conceptual direction by assuming that a signal should be assumed to be horizontal  until 
evidence indicates otherwise.   The analogy here is of a randomised experiment in which 
subjects from one defined population are assigned randomly to treatments so that, if the 
treatments have no effect, the null hypothesis of equal means in each experimental group is 
readily plausible.  This brings in the concept of the statistical power of a test for trend 
(Lettenmaier 1976; Nicholson and Fryer 1992). 
 
The implications of serial correlation are also affected by whether the approach is design- or 
model-based.  In the first case, the distinction between serial correlation and trend is 
undefined.  Serially correlated values can look like a trend when observed through a 
narrowed time window, and, vice versa, a trend can look like serial correlation when 
observed through a widened window.  Either situation could cause rejection of the “no trend” 
hypothesis.  Under model-based inference, serial correlation invalidates nonparametric tests 
that are based on the null assumption that all permutations of values around a horizontal 
signal are equally likely.  Serial correlation can be decreased by increasing the time intervals 
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between observations, or by modelling the serial correlation and subtracting the estimates 
from the series (Lettenmaier 1976).  Seasonal or other cyclical trends add to the 
complications since the seasonal trends may themselves move independently over years (Van 
Bell and Hughes 1984), and measurement errors could be serially correlated from one season 
to the next (Zetterqvist 1991; El-Shaarawi and Niculescu 1992).  Several nonparametric 
methods for seasonal trends are available (Hirsch et al. 1982; El-Shaarawi 1993; Esterby 
1993; Yu et al. 1993) but they are not considered in detail here since most fish survey data 
are annual. 
 
Monotonic trends might appear linear or curvilinear.  These are easily modelled, of course, 
but, with the design-based approach, any structural model of the pattern could only be 
postulated as a rough approximation to the signal from a natural system.   
 
The design-based approach is preferred here for its plausibility, because avoidance of 
modelling is consistent with the simplicity underlying nonparametric statistics, and because it 
relieves the analyst of many assumptions associated with model identification and fitting, 
thereby offering a genuine alternative to modelling.  To be consistent with the design-based 
approach, I suggest replacing the term “hypothesis” with the word “notion” when describing 
the signal as having no trend or a specific type of trend so as to be clearer about the 
informality of a test in these circumstances.  Trends can be estimated together with 
confidence limits without testing the usually untenable notion of 'no trend'.  Alternatively, the 
more reasonable null hypothesis (H) : “trend ≤ 0” can be tested with nonparametric methods 
against the alternative (A) : “trend > 0”.  This one-sided H encompasses a region of 
probability, not a point.  [Technically, it is a ‘composite hypothesis’ (Brownlee 1965).]  If 
true, it would not be rejected by a sample, however large or precise, except by chance with 
probability α, as expected for a statistical test.  Usually, this null hypothesis would be the 
most sensible choice for a test because a one-sided test is consistent with a prior concern that 
the trend is in one direction.  Applying a two-sided test for either a positive or negative trend 
could suggest that the data are being mined unscientifically for any detectable feature. 
 
A special problem with assessing trends is that they are often noticed in graphical plots 
before they are tested statistically or confidence limits are fitted.  Bearing in mind that trends 
are often visible in series of random numbers (Kendall 1976), the application of statistical 
methods a posteriori could be misleading.  Equally risky is when the terminal points of a 
trend are decided by inspection.  Questions of the type “Is this variable going up or down?”, 
e.g. for the purposes of controlling environmental quality, should be completed with “since 
when” before assessing statistically because the probability of a trend is likely to depend on 
the chosen starting point, as well as the end point if not the final observation.  If the interest 
lies in cause and effect, the recommended plan is to decide by prior reasoning when a trend 
might occur and in which direction, then to apply statistical methods to test whether the trend 
is present.  If it is, linking it with a putative cause in a matching time-frame might be 
reasonable as a cautious, on-going hypothesis.  Loftis et al (1991b) point out that trend 
analysis cannot establish cause and effect relationships. 

Nonparametric statistical methods for trends 

1. Example data 
Table 5.13.1 shows abundance (N per hour) indices for North Sea cod as found by the ICES 
International Bottom Trawl quarter 1 surveys from 1976 to 2004 at ages 1 to 6, except that 
results for ages 3 to 6 were missing in the earlier years.  These values were taken from a 
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report of the ICES working group on fish stocks of the North Sea and Skagerrak.  They will 
be used to illustrate application of various nonparametric statistical methods.  Some use the 
full time-series; others have to use only 1983 to 2004 when all age classes were determined. 
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Table 5.13.1.  International bottom trawl survey (IBTS) quarter 1: time series of abundance indices (numbers 
caught per hour) for cod in the North Sea in 6 age classes. -1 = missing value. 

 
Year Age1 Age2 Age3 Age4 Age5 Age6 
1976 7.9 19.9 -1 -1 -1 -1 
1977 36.7 3.2 -1 -1 -1 -1 
1978 12.9 29.3 -1 -1 -1 -1 
1979 9.9 9.3 -1 -1 -1 -1 
1980 16.9 14.8 -1 -1 -1 -1 
1981 2.9 25.5 -1 -1 -1 -1 
1982 9.2 6.7 -1 -1 -1 -1 
1983 3.9 16.6 2.7 1.8 0.8 1.5 
1984 15.2 8 3.9 0.9 1 0.9 
1985 0.9 17.6 3.5 1.7 0.5 1 
1986 17 3.6 6.8 2.3 1.3 1.1 
1987 8.8 28.8 1.4 1.7 0.6 0.9 
1988 3.6 6.1 5.8 0.6 0.9 1.1 
1989 13.1 6.3 5 2.3 0.4 1 
1990 3.4 15.2 2 1 1 0.8 
1991 2.4 4.1 3.4 0.8 0.4 0.8 
1992 13 4.5 1.2 1 0.3 0.5 
1993 12.7 19.9 2 0.7 0.6 0.4 
1994 14.8 4.4 3 0.8 0.5 0.5 
1995 9.7 22.1 2.8 1.1 0.3 0.3 
1996 3.5 8 6 0.7 0.6 0.4 
1997 40 6.9 2.3 1.1 0.4 0.4 
1998 2.7 26.4 2 0.9 0.5 0.4 
1999 2.1 1.6 8.1 0.8 0.5 0.5 
2000 6.6 3.8 0.7 2 0.4 0.5 
2001 2.8 8.7 1.7 0.2 0.4 0.3 
2002 7.8 3.4 4.3 0.5 0.1 0.2 
2003 0.6 3 1 1.4 0.4 0.3 
2004 7.5 1.3 1.2 0.30 0.4 0.01 
Median 7.9 8.0 2.75 0.95 0.5 0.5 
 

2. Quantiles and binomial methods 
A time-series may be characterised most basically by its median value +/- binomial 
confidence limits.  The latter are found by firstly ranking the observed values, then finding 
the ranks, conventionally shown in brackets as (a) and (b), with cumulative binomial 
probabilities nearest to the required confidence limits, e.g. 2.5% and 97.5% for the case of 
limits of approximately 95%.  Limits exactly at some preset, rounded percentage are seldom 
possible with the binomial distribution.  Binomial confidence limits for the median, μ~ , of a 
variable X are obtained with 
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where { }B  is the binomial probability function for sample size N and probability of 
‘success’=0.5 (for the median). See Connover (1971) for more details.  The binomial 
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probabilities are based on an assumption that the observations fall independently and 
randomly to either side of the median for the tested time period, a questionable assumption if 
a trend is present. [They can be computed in an MicroSoft Excel spreadsheet with the 
BINOMDIST function.]  Applying these formulae to an example subset of the abundance 
indices shown in table 5.13.1, the median index for age 1 cod from 1976 to 2004 was 7.9 
with 93.86% confidence limits of 3.5 and 12.7 if there was no trend.  These correspond to 
ranks a = 9 and b = 20 with cumulative binomial probabilities of 0.0307 and 0.969 
respectively.     Binomial confidence limits can also be estimated for more than one 
percentile simultaneously, e.g. the 10, 50, and 90 percentiles (Cotter 1985).   
 
The binomial distribution can be used to test H : “trend ≥ 0” against A : “trend < 0” by 
assuming only that the estimated median is close to the true median for the whole tested 
period.  This is a very simple test to carry out but it would often miss trends that would be 
detected by more elaborate methods.  Four quadrants are formed by intersection of the 
estimated median observed value with the median of the observation times, the latter being 
the vertical line half way through the observed series.  The test could also be applied to look 
for a step change; the vertical line would then be located at the time when the step change is 
expected.  Each observed value and its associated time of observation is then classified by 
quadrant.  The null hypothesis, H, implies that observations will fall equally into each 
quadrant or that there will be more in the lower left and top right quadrants.  Suppose that x 
out of N observations fall in either the top left or bottom right quadrants, implying A, a 
downward trend.  The probability that H is true is 
 

  { } { }∑
=
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[The '≤' would be '=' if H only represented independence of the four quadrants.]  Calculations 
for all ages are shown in table 5.13.2.  With the probability of rejecting H given that it is true 
being α=0.05, we would accept downward trends in abundance for cod of ages 2, 5, and 6.  
Note however that this is a set of univariate tests, so use of a lower value of α might be 
preferred to allow for the increased possibilities of type 1 errors in multiple tests.  A simple, 
if conservative, way to achieve this is with the Bonferroni inequality (Prins 2006); when 
conducting km ,...,1=  tests, set km αα = .  In this case, 0083.0=mα  implying that 
downward trends should only be accepted for the 5 and 6 year-olds.  Binomial tests can also 
be applied to assess compliance with an ecological quality objective set as a quantile other 
than the median though larger sample sizes tend to be necessary to find statistical 
significance (Cotter 1985).  Compliance testing with multiple objectives set as quantiles is 
further discussed by Cotter (1994). 
 



5. METHODS 

 101

Table 5.13.2.  Binomial test for a trend relative to the median value for the abundance indices shown in table 
5.13.1.  x = observed value, t = observation time; 0 indicates index ≤ median ;1 indicates index > median. 

 
Year Age1 Age2 Age3 Age4 Age5 Age6 
1976 0 1     
1977 1 0     
1978 1 1     
1979 1 1     
1980 1 1     
1981 0 1     
1982 1 0     
1983 0 1 0 1 1 1 
1984 1 0 1 0 1 1 
1985 0 1 1 1 0 1 
1986 1 0 1 1 1 1 
1987 1 1 0 1 1 1 
1988 0 0 1 0 1 1 
1989 1 0 1 1 0 1 
1990 =  median 
(1976-2004) 

0 1 0 1 1 1 

1991 0 0 1 0 0 1 
1992 1 0 0 1 0 0 
1993 = median 
(1983-2004) 

1 1 0 0 1 0 

1994 1 0 1 0 0 0 
1995 1 1 1 1 0 0 
1996 0 0 1 0 1 0 
1997 1 0 0 1 0 0 
1998 0 1 0 0 0 0 
1999 0 0 1 0 0 0 
2000 0 0 0 1 0 0 
2001 0 1 0 0 0 0 
2002 0 0 1 0 0 0 
2003 0 0 0 1 0 0 
2004 0 0 0 0 0 0 
Number of 
x > median and 
t <= med(year) 

9 9 6 7 7 9 

Number of 
x < median and 
t > med(year) 

9 10 6 7 10 11 

Number of x 
 

29 29 22 22 22 22 

Binomial 
probability (H: 
trend >=0 ) 

0.068 0.031 0.262 0.067 0.002 <0.001 

 
 

3. Cochran’s Q test 
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Cochran’s Q (Cochran 1950) tests the notion that the probabilities of response are the same 
(H) in different groups or, alternatively (A) detectably different.  The test can be adapted to 
look at multiple trends with the aim of avoiding the problem of multiple univariate tests 
mentioned in connection with binomial tests, above.  This is illustrated in table 5.13.3 using 
the abundance indices for 1 to 6 year-olds from 1983 to 2004. Age classes of cod are treated 
as groups, and each observed value is marked as a response, i.e. with a 1, if above the median 
value and located on or before the median time, or if below the median value and after the 
median time.  Otherwise it is marked as a non-response, i.e. with a 0.  In other words, each 
value gets 1 if it is consistent with a downward trend, and 0 otherwise.  The markings are 
shown in table 5.13.3.  Let jT  be the column sums in the j’th age class, Cj ,,1K= , and T  
the mean of them.  Let iu  be the i’th row sum, Ri ,,1K= .  Then Cochran’s statistic is 
defined as  
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Q is distributed as 2χ  with ( )1−C  degrees of freedom (Brownlee 1965, section 7.10) under 
H.  Note that Q is not sensitive to the total number of responses (since many of the iu may be 
zero) hence, for our purposes, it does not by itself establish whether or not an overall trend is 
present.  For the example, 56.3=Q  which is much less than ( ) 07.1152 =χ  implying that the 
different age classes are not showing detectably different trends, given that a general 
downward trend exists.  Cochran’s Q appears to have similarities with Friedman’s rank test 
for blocked data (Brownlee 1965), and with van Belle and Hughes’ test for homogeneity of 
seasonal trend (Van Bell and Hughes 1984).  El-Shaarawi (1993) suggests ways of extending 
the latter method to testing the notions that linear or quadratic patterns exist in the seasonal 
trends. 
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Table 5.13.3.  Cochran's Q test applied to age classes 1 to 6 from 1983 to 2004 for the abundance indices 
shown in table 5.13.1 illustrating how observed abundance indices are marked.  0 means index ≤ median and 1 

means index > median if year ≤ 1993, and vice versa if year > 1993. 

 
Year Age1 Age2 Age3 Age4 Age5 Age6 
1983 0 1 0 1 1 1 
1984 1 0 1 0 1 1 
1985 0 1 1 1 0 1 
1986 1 0 1 1 1 1 
1987 1 1 0 1 1 1 
1988 0 0 1 0 1 1 
1989 1 0 1 1 0 1 
1990 0 1 0 1 1 1 
1991 0 0 1 0 0 1 
1992 1 0 0 1 0 0 
1993 1 1 0 0 1 0 
1994 0 1 0 1 1 1 
1995 0 0 0 0 1 1 
1996 1 1 0 1 0 1 
1997 0 1 1 0 1 1 
1998 1 0 1 1 1 1 
1999 1 1 0 1 1 1 
2000 1 1 1 0 1 1 
2001 1 0 1 1 1 1 
2002 1 1 0 1 1 1 
2003 1 1 1 0 1 1 
2004 1 1 1 1 1 1 

 

4. Runs test 
A ‘run’ is defined as any sequence of 1 or more like elements from two classes.  In the 
present context, this could mean above or below a level line, or a notional trend line.  The 
runs test examines the notion of randomness in a series by looking at the number of runs of 
observed values above and below the median and comparing with the expected number 
which, along with variance, can be computed from theory.  Non-randomness is usually 
represented by positive serial correlation of the observations, i.e. fewer than the expected 
number of runs, hence the test is usually one-sided.  Serial correlation may be of interest in 
itself, e.g. as an interfering factor in a model-based test of trend (Loftis et al. 1991b), but 
could also arise from non-monotonic trends in the underlying signal.   
 
Sources on the runs test are texts by Brownlee (1965, section 6.3) and Conover (1971, p. 
349).  Let the two classes of elements be a or b for ‘above’ or ‘below’ the sample median.  
Values equal to the median are ignored.  Let the number of a’s be m .  Then the number of 
b’s turns out also to be m, assuming no tied values.   The expected number, u, of runs is  
 
  ( ) muE += 1  
 
and the variance is 
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Exact probabilities of runs are available (Swed and Eisenhart 1943) but for series of 
reasonable length (?), it is easier, and justifiable under the Central Limit Theorem, to assume 
that the statistic 
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is approximately a standard normal variate.  The 0.5 in the numerator is a correction for 
continuity.  For a one-sided test, compare the test statistic with the standard normal deviate 
having cumulative probability of α.  If the probability of the observed number of runs is less, 
serial correlation is detected.   
 
The runs test is illustrated using the abundance indices for 1 to 2 year-olds from 1976 to 
2004, and for 3 to 6 year-olds from 1983 to 2004 in table 5.13.4.  Scoring of the runs above 
and below the median is shown in table 5.13.4.  It is similar to the markings in table 5.13.2 
except that values equal to the median must also be marked and ignored when counting the 
runs.  Some tied values prevented n and m from being equal in each of age classes 2 and 5; m 
and n were adjusted to the minimum of the pair.  The probabilities that the series were 
random, shown at the bottom of table 5.13.4, indicates that only the 6 year-olds were non-
random by this test.  The runs test is noticeably less sensitive to pure trend than the binomial 
test in relation to the median (section 2 above) because the continuity of runs above and 
below the median is frequently broken by variant observations. 



5. METHODS 

 105

Table 5.13.4.  Runs test applied to age classes 1 to 6 from 1983 to 2004 for the abundance indices shown in 
table 5.13.1 illustrating how runs are obtained.  0 means index ≤ median and 1 means index > median; M means 

= median (observation ignored). 

 
 

Year Age1 Age2 Age3 Age4 Age5 Age6 
1976 M 1     
1977 1 0     
1978 1 1     
1979 1 1     
1980 1 1     
1981 0 1     
1982 1 0     
1983 0 1 0 1 1 1 
1984 1 M 1 0 1 1 
1985 0 1 1 1 M 1 
1986 1 0 1 1 1 1 
1987 1 1 0 1 1 1 
1988 0 0 1 0 1 1 
1989 1 0 1 1 0 1 
1990 =  
Median 
(1976-2004) 

0 1 0 1 1 1 

1991 0 0 1 0 0 1 
1992 1 0 0 1 0 M 
1993 = 
Median 
(1983-2004) 

1 1 0 0 1 0 

1994 1 0 1 0 M M 
1995 1 1 1 1 0 0 
1996 0 M 1 0 1 0 
1997 1 0 0 1 0 0 
1998 0 1 0 0 M 0 
1999 0 0 1 0 M M 
2000 0 0 0 1 0 M 
2001 0 1 0 0 0 0 
2002 0 0 1 0 0 0 
2003 0 0 0 1 0 0 
2004 0 0 0 0 0 0 
N runs=> 14 18 13 16 8 2 

N>median: 
m 

14 13 11 11 8 9 

N<=median:
n 

14 14 11 11 10 9 

Adjusted m,n 14 13 11 11 8 9 

E(runs)= 15 14 12 12 9 10 
V(runs)= 6.74 6.24 5.24 5.24 3.73 4.24 
Normal d.f. -0.19 1.80 0.66 1.97 -0.26 -3.64 
Probability 
that series is 
random 

0.42 0.96 0.74 0.98 0.40 <0.01 
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5. Mann-Kendall’s K 
Kendall’s tau is used to measure concordance or correlation (Hollander and Wolfe 1973).  
Slightly adapted (Mann 1945), Kendall’s method is considered to be very sensitive to 
monotonic trends (Esterby 1993).  Every observed value is paired with every value observed 
after it and the pair scored 1 if the first is greater than the second, 0 if the same, and –1 if the 
first is less than the second.  The Mann-Kendall test statistic, K, is the sum of these values2.  
The null hypothesis is H : “trend ≥ 0” against A: “trend is monotonic, negative”, or vice 
versa.    Note that, if a turning point is definitely expected at a certain time, the observations 
could be re-ordered in time to conform with monotonicity under A. 
 
K takes on large positive or negative values when a monotonic trend is present.  One-tail 
probabilities of observing K under H are tabulated by Hollander and Wolfe (1973, Appendix 
A.21) but, for large samples of size n, 
 
   ( )( )[ ]18521* +−= nnnKK  
 
is distributed as a standard normal variate if no data are tied.  If there are ties, the square root 
denominator representing the standard error of K has to be inflated (Hollander and Wolfe 
1973, p. 187).   According to a citation in Yu et al. (1993), 10 observations are adequate for 
“large sample”.   
 
Scoring of observations for Kendall’s K is illustrated in table 5.13.5 for age 1 abundance 
indices for cod from 1976 to 2004.  The full table has 29 columns, so only 3 years of scores 
are shown.  The sum of all the scores from 1976 to 2004 (K) was -106, and n=29, giving a 
large-sample standard normal approximation of -1.988.  The corresponding probability of no 
trend is 0.02, implying here that a monotonic, downward trend was present in the signal.  
Note that the test is more sensitive to trend than the median test for trend where the 
probability of no trend was found to be 0.068 (table 5.13.2).  On the other hand, the Mann-
Kendall test is much more work to carry out on a spreadsheet.  Kendall’s test is available in 
R [cor.test(. . . method=”kendall”. . .).  The observed values are correlated with times of 
observation, or their ranks, to achieve the Mann-Kendall test. 
 

                                                 
2 Kendall’s ( )12 −= nnKτ  is that used in correlation studies. 
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Table 5.13.5.  Kendall's Tau test applied to age class 1 from 1976 to 2004 for the abundance indices shown in 
table 5.13.1 illustrating how the sequence of observed indices is scored for 1976 with subsequent years (column 

1), and similarly for 1977 and 1978 (columns 2 and 3).  Other years to 2004 not shown. x denotes observed 
value, k and i are years. 

 
Year sign(x(k) - x(i)), i<k 
 1976 1977 1978 
1977 1   
1978 1 -1  
1979 1 -1 -1 
1980 1 -1 1 
1981 -1 -1 -1 
1982 1 -1 -1 
1983 -1 -1 -1 
1984 1 -1 1 
1985 -1 -1 -1 
1986 1 -1 1 
1987 1 -1 -1 
1988 -1 -1 -1 
1989 1 -1 1 
1990 -1 -1 -1 
1991 -1 -1 -1 
1992 1 -1 1 
1993 1 -1 -1 
1994 1 -1 1 
1995 1 -1 -1 
1996 -1 -1 -1 
1997 1 1 1 
1998 -1 -1 -1 
1999 -1 -1 -1 
2000 -1 -1 -1 
2001 -1 -1 -1 
2002 -1 -1 -1 
2003 -1 -1 -1 
2004 -1 -1 -1 

 

6. Thiel’s or Sen’s slope estimator 
Thiel’s slope estimator is used for a notional linear trend: 
 
  iii exY ++= βα ,                    ni ,...,1=  
 
The e’s must be mutually independent and from the same continuous population (Hollander 
and Wolfe 1973).  Theil’s estimator for β  is similar in construction to that for Mann-
Kendall’s K.  Every observed value is paired with every value observed after it, and the 
slope, ( ) ( )ijijij xxYYS −−= , ji < , calculated.  Theil’s estimator is the median of these 
values.  Sen’s estimator, as described by Yu et al. (1993), appears to be exactly the same.  
Small sample confidence limits are available using Hollander and Wolfe (1973, chapter 9 and 
table A.21).  For large samples, use the rounded integer value of  
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The α−1  confidence interval is obtained from the ranked slope values.  Use ( ) ( ){ }UL SS ,  
where rank ( ) 2αCNL −=  and rank ( ) 2αCNU += .   
 
As an illustration, Thiel’s slope estimator and 95% confidence limits were calculated for the 
age 1 abundance indices for cod from 1976 to 2004.  The median slope, -0.23, is drawn 
through the intersection of the median value of Age 1 indices, 7.9 fish per hour, and the 
median observation time, 1990, in fig. 5.13.1 below.  I am not aware of a method for 
estimating confidence limits for Y that takes into account the covariance of estimated α  and 
β . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13.1  Thiel’s slope estimator for the age 1 abundance indices, 1976 to 2004, shown in table 5.13.1. 

 

7. Spearman’s rho 
Spearman’s rho is the product-moment correlation between the ranks of paired data, the 
ranking being carried out separately for each variable of the pair.  To test for trend, one 
member of the pair is the time of observation, the other is the observed variable.  In practice, 
the arithmetic needed to calculate rho can be avoided by simply using 
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where i indexes the observation times and ( )iXR  is the rank of the corresponding 
observation (Lettenmaier 1976).   This is also known as the Hotelling-Pabst test.  T is small 
when ( )iXR  and i are positively correlated, and large when negatively correlated.  Connover 
(1971, p389) gives quantiles for T for series up to 30 observations.  Alternatively, use 
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where px  is the p’th quantile of a standard normal deviate.  T should be less than pw  (and px   
on the negative side of the normal distribution) for an upward trend, i.e. positive correlation 
with time, and T should be greater than pw  (and px  on the positive side of the normal 
distribution) for a downward trend, i.e. negative correlation (Conover 1971).   
 
Calculation of Spearman's Rho is illustrated in table 5.13.6 for age 1 abundance indices for 
cod from 1976 to 2004.  5586=T  which is greater than 5564=pw  with 96.1975.0 =x , 
implying that the downward trend for 1-year olds is significant at 025.0=α .  This is not as 
significant as was found with Mann-Kendall’s K which gave 018.0=α  but it is more 
significant than was found with the median test, 07.0=α .  The sequence of probabilities is 
roughly matched inversely by the work required to carry out the tests on a spreadsheet.  
Connover states that the normal approximation is better for Kendall’s tau than for 
Spearman’s rho with small sample sizes. 
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Table 5.13.6.  Spearman's Rho test applied to age class 1 from 1976 to 2004 for the abundance indices shown in 
table 5.13.1 illustrating the ranking (R) of years (y) and observed indices (a), and the computation of T. 

 
Year Age 1 

index 
Year rank Data rank (R(y)-

R(a))^2 
1976 7.9 1 15 196 
1977 36.7 2 28 676 
1978 12.9 3 21 324 
1979 9.9 4 19 225 
1980 16.9 5 26 441 
1981 2.9 6 7 1 
1982 9.2 7 17 100 
1983 3.9 8 11 9 
1984 15.2 9 25 256 
1985 0.9 10 2 64 
1986 17 11 27 256 
1987 8.8 12 16 16 
1988 3.6 13 10 9 
1989 13.1 14 23 81 
1990 3.4 15 8 49 
1991 2.4 16 4 144 
1992 13 17 22 25 
1993 12.7 18 20 4 
1994 14.8 19 24 25 
1995 9.7 20 18 4 
1996 3.5 21 9 144 
1997 40 22 29 49 
1998 2.7 23 5 324 
1999 2.1 24 3 441 
2000 6.6 25 12 169 
2001 2.8 26 6 400 
2002 7.8 27 14 169 
2003 0.6 28 1 729 
2004 7.537 29 13 256 
 Sum, T 5586 

 
 

8. Jonckheere’s test 
Jonckheere’s test  is a nonparametric version of a one-way analysis of variance with unequal 
sample sizes, except that it tests H: ‘no treatment effect’ versus the special alternative, A: ‘the 
treatments are ordered in effect’ (Hollander and Wolfe 1973, p. 120).  This can be applied to 
trends by equating observation times to treatments and then arranging them in the order 
implied by the possible trend so as to make a one-sided test.  Hypothesis A is then equivalent 
to a monotonic trend, as for Mann-Kendall’s K.  For a time-series of un-replicated 
observations, Mann-Kendall’s K is the conventional test to use.  However, if observations are 
independently replicated at some time points, the Mann-Kendall test is not clearly applicable 
and Jonckheere’s test can be applied instead.   
 
Let the number of observation times be k.  It is necessary first to find ( ) 21−kk  Mann-
Whitney counts uvU  where u and v are times of observation and kvu ≤<≤1 : 
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vu nn ,  are the numbers of observations at times u and v respectively, while ( ) 1, =baφ  if 
ba < , and 0 otherwise.  Be warned, this is an extensive job for large k using a spreadsheet.  

The test statistic, ∑ <
=

k

vu uvUJ , can be compared with table A.8 in Hollander and Wolfe 
(1973), or, when the minimum number of replicate observations at any point is large (?), can 
be transformed to J* which is approximately normally distributed:  
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.  As for Kendall’s test, this would be one-tailed.  H is rejected if J* exceeds the 

standard normal deviate at the required level of significance.   
 
Table 5.13.7 presents a fabricated set of data to illustrate computations for Jonckheere's test.  
Abundance indices for 1-year olds were arbitrarily re-assigned to a shortened series of 10  
years so as to create a set of replicate observations.  J was found to be 209 which together 
with the totals in the right 3 columns of table 5.13.7a gave J* = 0.8318 which is less than 
1.645, the standard normal deviate corresponding to 95% of the area under the normal curve.  
Not surprisingly, the arbitrarily re-arranged data did not show a significant monotonic trend. 
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Table 5.13.7.  Jonckheere’s test applied to abundance indices for cod of age class 1 from 1976 to 2004 taken 
from table 5.13.1 and arbitrarily assigned to a shortened series of 10 years with variable replication annually for 
illustrative purposes.  a) resulting test data and computation of terms for the test statistic; b) illustrating scoring 

for u = 1976 and v = 1977, 1978. 

 
a) 
Year Dummy replicate observations nj nj^2 nj^2*(2nj

+3) 
1976 7.9 17 3.5   3 9 81 
1977 36.7 8.8    2 4 28 
1978 12.9 3.6 2.7   3 9 81 
1979 9.9 13.1 2.1 40 7.8 5 25 325 
1980 16.9 3.4 6.6   3 9 81 
1981 2.9 2.4    2 4 28 
1982 9.2 13    2 4 28 
1983 3.9 12.7 0.6 2.8  4 16 176 
1984 15.2 14.8 7.537   3 9 81 
1985 0.9 9.7    2 4 28 
   Sum=> 29 93 937 
 
 
 
b) 

u = 1976 Replicate 1 Replicate 2 Replicate 3 
v = 1977 

Replicate 1 1 1 1 
Replicate 2 1 0 1 

v = 1978 
Replicate 1 1 0 1 
Replicate 2 0 0 1 
Replicate 3 0 0 0 

 
 

9. Permutation (randomisation) and bootstrapping methods 
Permutation tests are described in connection with benthic studies by Bell et al. (1981).  They 
are alleged to be more sensitive to trend than rank tests.  Let Y be the observed value, and t 
the time of observation, Tt ,...,1= .  Calculate 
 
    ∑=

t ttYh  
 
and compare with the !T  values of h* computed with the t values permuted.    Bell et al. state 
that if there is no change in Y over time, h is likely to fall near the middle of the range of h*, 
otherwise near one of the extremes.  Probabilities of h or values more extreme can be found 
because each permutation is equally likely.  Computation of all permutations may be an 
onerous and unnecessary task.  The sample() function in the R programming language 
readily produces random permutations that may suffice for building up a reference set for 
assessing probabilities.  The case for a randomisation test is likely to be strong when the 
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number of observations available is very small, e.g. less than 10.  Many other nonparametric 
methods then need access to special tables to estimate significance because the Central Limit 
Theorem can not be invoked satisfactorily to argue that test statistics are approximately 
normally distributed, as for Spearman’s rho and Mann-Kendall statistics for example.  Ties 
can further complicate application of competing nonparametric methods. 
 
Edgington (1995, p. 15) points out that “Parametric tests of all kinds, including relatively 
complex tests, . . . become distribution-free when the significance is determined by a 
randomization test procedure.”  Consider for example a least squares estimator of slope.  
Rather than assume that the observations at each time point were a random sample from 
some population and looking up the value of t or F for the slope based on that assumption, 
the observations and times are permuted to create a reference set of estimated t or F statistics, 
then the observed value is compared with the reference set and its statistical significance 
judged from the proportion of the reference set having a more extreme value.  Edgington 
describes several randomisation tests applicable to trends over treatment levels in randomised 
experiments but states (p. 217) “. . .randomization trend tests do not test hypotheses about 
trends; they simply utilize test statistics sensitive to trend which test the null hypothesis of no 
differential treatment effect.”  His view is possibly related to the focus on experiments in his 
book.  On the other hand, finding that an observed trend over time is unlikely by a 
randomisation test, even outside a randomised experiment, seems to be no less useful than 
finding it by means of other nonparametric tests.   
 
Bootstrapping observations could be another way of assessing the significance of observed 
trends, particularly for fisheries survey data for which abundance indices can be bootstrapped 
to estimate sampling and measurement errors (Beare et al. 2002) even though analytical 
formulae for variances are hard to derive or non-existent.  The trend would be fitted to each 
bootstrapped series and the distribution determined.  To be nonparametric, the estimates 
should be based on sampling theory and no model assumed.  The bootstrap is no less 
vulnerable than most other statistical methods to small numbers of observation times. 
 
There are subtle differences between bootstrapping and randomisation tests.  Bootstrapping 
uses a sample as a surrogate for the population and (re-)samples the sample with 
replacement.  A randomisation test of trend permutes observations to time points without 
replacement and without reference to the sampling process generating the observations.  
Bootstrapping empirically estimates the distribution of statistics assuming that the observed 
sample looks like the true population.  On the other hand, randomisation tests provide a form 
of statistical inference when the sample itself is assumed to be the total population of interest.  
When testing for trend in an environmental context, the quality of the sample appears to be 
just as important as for the bootstrap. 

10. Dietz and Killeen test for multivariate monotone trend (turquoise box) 
Dietz and Killeen (1981) derived a formula for the covariance matrix of Mann-Kendall 
statistics estimated from a multivariate monitoring programme, and proposed a test statistic 
based on it that is asymptotically distributed as 2χ .  Use of multivariate methods “controls 
the overall significance level” when multiple univariate tests are made with covarying 
observations, and there were very few cases in a study of lake water quality “where the 
univariate methods perform better” (Loftis et al. 1991b).  Multivariate methods appear to be 
especially applicable when monitoring groups of indicators expected to respond similarly to 
environmental changes of concern.  The Dietz and Killeen test has the same strengths as the 
Mann-Kendall test for discovering trends that are specifically monotonic.  An alternative but 
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related test when the aggregate trend of several variables is of interest, e.g. when correlated 
measures of one variable are made seasonally, was given by Hirsch and Slack (Hirsch and 
Slack 1984).  Comparisons of nonparametric methods with linear models in a multivariate 
context were made using simulation by Loftis et al. (Loftis et al. 1991a). 
 
Code in R (Mvar.trend.r) for the Dietz and Killeen test is available from 
http://www.ifremer.fr/drvecohal/fisboat/index.htm; it was trialled with data given by Dietz 
and Killeen and found to give the same results.  Fig. 5.13.2 shows selected output from 
Mvar.trend.r applied to the cod abundance indices, ages 1 to 6, 1983 to 2004.  (About 2 
minutes were required for running; times increase roughly in proportion to the product of 

pn3 .) The first matrix shows the Mann-Kendall statistics.  Those along the diagonal are 
computed as for the univariate statistics; see section 5 above.  Those off the diagonal are 
 
   ( )( )[ ]∑

<

−−=
ji

ijijXY YYXXsignK  

 
where ( ) 1,0,1 −=xsign  for positive, zero, and negative values respectively.  XYK  is high and 
positive when both the X and Y variables are showing monotonic trends in the same 
direction, and high and negative when in opposite directions.  The second matrix, S, in box 
10 shows the covariances of these statistics calculated using formulae given in the appendix 
of Dietz and Killeen.  The third matrix shows the Spearman rank correlations of the observed 
values.  The highest correlations occur among the older age groups.  Note that although 
values along the diagonal of a correlation matrix are normally 1, some here are less than 1 
due to tied values within the time-series.  The test statistic, 09.25=− KSK 1T  is compared 
with 2χ  with 6 d.f. (all age classes contribute to d.f. since no parameters are estimated) and 

found to be highly significant, 548.18;005.0 2 =< χP .  The standardised K for each age 
class and their standard errors are shown below.  This is the same information that would 
come from testing each age class separately.  Examination of them when the multivariate null 
hypothesis is rejected should indicate which of the age classes was responsible (Loftis et al. 
1991b).  For 1-sided tests, standardised K greater in magnitude than 1.64 are likely to be 
contributing to the significance of the multivariate result.  The results suggest that all except 
1-year olds are contributing. 
 
 

http://www.ifremer.fr/drvecohal/fisboat/index.htm�
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Figure 5.13.2.  Output from Mvar.trend.r applied to cod abundance indices for ages 1 to 6 from 1983 to 2004 
given in table 5.13.1.  $Kxy is Matrix of Kendall stats (K), age1 to 6; $S is covariance matrix of K; 

$Spearman.corr is the rank correlation matrix of the abundance indices; $Standardised.K  is K from diagonal of 
S (above), divided by $St.error.K (last row).   Some rows of output are omitted to save space. 

 
 

>Mvar.trend(IBTS.indices)  
$Kxy   

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] 
[1,] 0 0 0 0 0 0 0
[2,] 0 -45 -2 12 32 11 22
[3,] 0 -2 -72 -31 27 34 27
[4,] 0 12 -31 -60 -13 52 66
[5,] 0 32 27 -13 -74 16 91
[6,] 0 11 34 52 16 -97 95
[7,] 0 22 27 66 91 95 -166

   
$S   

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] 
[1,] 0 0 0 0 0 0 0
[2,] 0 1257.667 29.33333 108.6667 249.3333 61.66667 140

[3,] 0 29.33333 1256.667 -155 206.3333 309 232.3333
[4,] 0 108.6667 -155 1254 -90.3333 394 475.3333
[5,] 0 249.3333 206.3333 -90.3333 1248 106.6667 662

[6,] 0 61.66667 309 394 106.6667 1215 724.6667
[7,] 0 140 232.3333 475.3333 662 724.6667 1232.667

   
$Spearman.corr  

 [,1] [,2] [,3] [,4] [,5] [,6] [,7] 
[1,] 0 0 0 0 0 0 0
[2,] 0 1 0.025409 0.08865 0.202146 0.049125 0.112366
[3,] 0 0.025409 0.999435 -0.12253 0.167137 0.252117 0.189159
[4,] 0 0.08865 -0.12253 0.997741 -0.07284 0.319029 0.383964
[5,] 0 0.202146 0.167137 -0.07284 0.994353 0.085827 0.535009
[6,] 0 0.049125 0.252117 0.319029 0.085827 0.971203 0.586957

[7,] 0 0.112366 0.189159 0.383964 0.535008 0.586957 0.98419
   

$Standardised.K  

[1] -1.26891 -2.03106 -1.69435 -2.09471 -2.78281 -4.72809 
   

$St.error.K  

[1] 35.4636 35.44949 35.41186 35.32704 34.85685 35.10935 
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5.4 Construction of multivariate indicators.  

5.4.1 Principal Components Analysis (PCA) and biological 
indicators 
Pierre Petitgas, 
IFREMER, Nantes, 
France  

Introduction 
For each survey, a variety of indices of stock attributes are usually estimated. A multivariate 
monitoring procedure is then potentially more efficient than procedures based on the analysis 
of a collection of univariate monitoring charts as the multivariate analysis will make coherent 
use of the relationships between the many indices of stock attributes. Here we suggest 
application of PCA to the Fisboat biological indicators (abundance indices, length indices 
and mortality index) and represent the evolution of the stock by a multivariate distance to a 
reference gravity centre. Clearly, abundance and length indices are potentially related and 
more consistency can be obtained by explicitly using these correlations. But the method will 
not take into account any correlations in time between indicators, in particular lagged effects 
of one indicator on another.  

Method 
Consider an array where for each line (observation) we have a vector of measurements for a 
variety of parameters (variables). Measured values of variables are in columns and each line 
is one observation (here in time). The variables can be correlated between each others. PCA 
constructs linear combinations of variables (factors) that are non correlated between each 
other and that best account for the variability in the data array. Mathematically, this is done 
by diagonalising the correlation matrix of the variables. Eigen vectors geometrically support 
principal components. These are ranked by their decreasing importance of data variance 
explained. The geometrical properties of the method enables representation of the correlation 
structure among the variables as well as the position of each observation in the space of the 
principal components (factorial space). The correlation between two variables (variable - 
variable or variable - principal component) is represented by the angle between vectors. The 
similarity between observations is represented by their Euclidean distance in the factorial 
space. It is usual to analyse correlation between variables and similarity between 
observations in a factorial sub-space made by a reduced number of principal components. 
These are the first principal components that account for a large percentage of the data 
variance (e.g., 80%). Such reduction corresponds to filtering variability in the data assumed 
to be noise. The few retained non correlated factors then summarise the multivariate structure 
of the data. PCA (e.g., Lebart et al., 1995) is a widely used technique in many fields 
including marine ecology that was first developed more than fifty years ago.  

Software 
The R code available from the FISBOAT web site, 
http://www.ifremer.fr/drvecohal/fisboat/index.htm, is pcachart.R. It is commented. It uses the 
R library ade4 (Chessel et al., 2006) for performing the PCA. The PCA is applied to the 
Fisboat Table 2 of biological (non spatial) indicators. A set of reference years is defined, in 
which the population is considered in acceptable health status. The PCA is performed giving 
high weight to the set of reference year observations (99.9%). In that way, the factorial space 

http://www.ifremer.fr/drvecohal/fisboat/index.htm�
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is not affected by years outside the reference period: years outside the reference period play 
the role of passive variables that are projected in a reference factorial space. First the 
decrease in the eigen values is illustrated. Then the correlation structure in the indicators is 
illustrated using the first three principal axes and the loadings of the indicators on these are 
provided in a table. This allows to interpret the principal axes. Then the similarity between 
years is illustrated by positioning the years in the plane made by the first two principal axes. 
On the figure, the reference period years are marked by a symbol while the non reference 
years to be monitored are labelled by their number. A multivariate distance in each year is 
then calculated, which quantifies the deviation of that year to the gravity centre of the 
reference years, and is saved with the name mdbio. The multivariate distance is the euclidean 
distance between the position of any year p(y) and the gravity centre of the reference years 
cref: );(2

refyy cpdd = .  
 
Inputs are : Table 2 (from the FISBOAT web-site) of biological non spatial indices, years to 
consider as reference period, number of principal PCA axes to consider for computing the 
multivariate distance mdbio. Outputs are: a figure representing the decrease in eigen values, 
figures illustrating the correlation structure between variables, correlation table of the 
variables on the PCA axes (loadings), the time series of the mdbio multivariate distance as 
well as its histogram.  

Example 

North Sea cod 
PCA can be used to set up a multivariate monitoring approach of stock status using the many 
indicators of biological stock attributes available for North Sea cod, see tables 1 and 2 at 
http://www.ifremer.fr/drvecohal/fisboat/. Because the indicators are correlated to each other, 
PCA is useful to summarise the correlation structure between the parameters and reduce the 
dimensionality of the monitoring scheme using a small number of non correlated factors. The 
monitoring approach will then take place in the factorial space composed of the first two (or 
more) principal axes. A reference domain in that factorial space (in-control domain) can be 
defined based on the position of reference years in that factorial space. The definition of 
reference years is analogous to monitoring a process when it is in-control: the reference year 
period is the set of years where the stock could be considered in acceptable health. The 
multivariate monitoring approach compares the current year vector of stock indicators to that 
of the reference period. It is therefore suggested to estimate the gravity centre of the 
reference years and, for each year, to calculate the distance to that reference gravity centre. 
The time series of the multivariate distance then summarises the deviation of the population 
biological characteristics from its reference status.  
 
Fisboat table 2 of biological non spatial indicators comprises the year observations as lines 
and the columns as variables. It is a typical set for input to a PCA. The PCA will display the 
correlation structure between indicators (abundance, length, mortality) and will allow 
quantification of which years depart from the others, not just because of one indicator but as 
a whole in their multivariate characteristics.  
 
Reference years are 1985-1994. Figure 5.10.1 illustrates the correlation structure in the 
biological indicators. Length50 at maturity heavily determines the first principal axis. The 
second is determined by total abundance and the opposition between total abundance and 
length at the third quartile (L75). The third axis is determined by mortality (Z) which is 
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hardly correlated with any other indicator. Overall, length indices and abundance indices are 
correlated. Figure 5.10.2 illustrates the multivariate monitoring approach. Years 1997, 1999, 
2003-2005 are well outside the domain defined by the reference years, meaning that they 
depart largely from the reference status. The direction of departure is on the first and second 
axes meaning that departure is primarily guided by changes in abundance and length at 
maturity. This is quantified by the multivariate distance on which a statistical monitoring 
scheme can then be applied.   
 
 
 

  
Figure 5.10.1. Correlation structure between the biological non spatial indices (Fisboat Table 2) for North Sea 

cod. Left: principal axes 1 and 2; right: principal axes 1 and 3. 

 

 
Figure 5.10.2. Monitoring North Sea cod in the factorial sub-space of the two first principal axes using the 

biological non spatial indicators (Fisboat Table 2). Left: representation of years in the factorial sub-space (the 
black diamonds are the reference years); right: the time series of the multivariate distance representing the 

deviation of the stock from its reference status.  
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5.4.2 Multi-factorial analysis (MFA) and spatial indicators 
Pierre Petitgas, Jean Charles Poulard.  
IFREMER, Nantes, France. 

Introduction  
MFA is a multi-table analysis method (Escoffier and Pagès, 1994 ; Dazy and Le Barzic, 
1996) extending PCA methodology (Principal Component Analysis) to the analysis of 3D 
structured data. In particular, MFA is designed for cases where the same variables (data 
matrix columns) are measured for the same individuals (e.g., stations : data matrix rows) at 
various times (third dimension of the data structure). The method allows the construction of a 
unique factorial space in which to represent each data matrix for each time, each variable and 
each individual. This unique factorial space is a compromise space that best matches that of 
each data matrix at each time.  It allows extensive tables of data to be represented pictorially 
in such a way that groupings among variables in space and time are readily identifiable. 
 
The method has been applied in fisheries science to characterise seasonal and inter-annual 
variation in fish community structure (Gaertner et al., 1998), fishing activity (Poulard and 
Léauté, 2002), as well as common structure between trophic levels (Petitgas et al., 2006). It 
has been used in FISBOAT for summarising the average life cycle spatial organisation 
(Woillez et al., in press). Here we suggest a measure of inter-annual variation in that pattern 
and an R code for doing so. 

Method 
The method proceeds in two steps. First a PCA is performed on each data matrix. Then each 
variable at each time is weighted by the inverse of the first eigen value of that matrix. Then a 
general matrix is constructed that contains all the weighted variables in columns and the 
individuals as rows. The PCA of that general matrix constructs the MFA compromise 
factorial space. Its principal axes are interpretable using the correlation of the variables to 
them. The interest in the method is the construction of a compromise factorial space in which 
to represent the 3D structure of the data : each individual is represented by n points (n 
repetitions in time) as well as by its gravity centre (average position in the compromise 
factorial space).  

Software 
The R code available from the FISBOAT web site, 
http://www.ifremer.fr/drvecohal/fisboat/index.htm, is dmul_mfa.R. It is commented. It uses 
the R library ade4 (Chessel et al., 2006) for performing the MFA. Using the Fisboat Table 1 
of spatial indicators [http://www.ifremer.fr/drvecohal/fisboat/] as input, the code will produce 
a figure representing the life cycle spatial pattern in the two first principal axes of the MFA 
space. On the figure, each point represents a particular age in a particular year. The average 
position for each age is labelled. A multivariate distance is built quantifying in each year the 
deviation from the average. This distance, named dmul, is the sum over the ages of the 
distance between the yearly position of each age p(a,y) and its gravity centre c(a): 

∑=
a

ayay cpdd );( ,
2 .  The code also provides as output a table of the number of times the 

correlation between each spatial indicator and the MFA axes is greater than 0.5, allowing 
interpretation of the axes. The output result is the times series of the multivariate dmul 

http://www.ifremer.fr/drvecohal/fisboat/index.htm�
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distance, which characterises the inter-annual variation around the average spatial pattern of 
the life cyle.  
 
The position of each age in each year p(a,y) is computed by applying MFA to all years. The 
age-specific gravity centres relative to which deviations are referenced are calculated 
considering reference years only, that must be provided as input. The gravity centre for each 
age is the average position of each age specific point in the MFA space for the years of the 
reference period.  
 
Inputs are : Table 1 of spatial indices, years to consider as the reference period, and the 
number of principal MFA axes to consider for computing the distance dmul. Outputs are a 
figure representing the life cycle pattern in the MFA space, correlation tables of the variables 
with the MFA axes, the time series of the dmul distance as well as its histogram.  

Example 

North Sea cod 
The life cycle of any fish population is organised in space because the fish will occupy 
different habitats at different life stages. Therefore, the young and the old can be expected to 
show different characteristics in their spatial distribution. The spatial indicators developed in 
Fisboat have been applied to survey numbers-at-age for a series of years. They thus 
characterise the fish distributions at age in different years. In each year, the matrix made of 
the spatial indicators in columns and the ages in rows describes the life cycle pattern of the 
population in that year. In the MFA compromise space, the cloud of points of the 
compromise individuals represents the average life cycle pattern. In general, structure in the 
data is strong and the first two principal axes are explained at least by location and 
aggregation indicators, meaning that there is a change with age in the location and 
aggregation of the fish. MFA is then used to describe these patterns and their inter-annual 
variation. In particular, the departure of individual points in each year from the average cloud 
represents inter-annual variation in the life cycle organisation. An R code has been developed 
to calculate such variation.  
 
Reference years are 1985-1994. Fig. 5.11.1 illustrates the structure in the spatial organisation 
and fig. 5.11.2 illustrates the monitoring of the deviations from the mean reference structure. 
Each point on fig. 5.11.1 (left) represents the position of a given age and year in the MFA 
factorial sub-space of the first two principal components. The age labels identify the mean 
position for each age for the reference years, materialising the reference life cycle spatial 
organisation of North Sea cod. In effect, marked and progressive differences exist across 
ages. The table on fig. 5.11.1 (right) summarises the correlation structure in the spatial 
indicators. The first component is determined by having a larger area occupied, a centre of 
gravity more to the north and west, higher inertia (dispersion), and a lower nugget effect. The 
second component is determined by having a centre of gravity more to the north, higher 
anisotropy and a smaller positive area. Marked and progressive differences in the spatial 
distribution of ages are shown on fig. 5.11.1 (left), which characterise the life cycle spatial 
pattern of North Sea cod. Young (A1) and old ages (A5-6) differ on the first component from 
intermediate ages (A2-4). Spatial distributions of young and old ages are more to the east, are 
less dispersed, occupy a smaller area, and have a higher nugget effect than that of 
intermediate ages, which are more to the west, more dispersed, occupying larger areas and 
with smoother correlation. Age 1 and Ages 5-6 differ on the second principal component by 
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the location of their centre of gravity and anisotropy.  The spatial distribution of old ages is 
more to the north, is more anisotropic, and occupies a smaller area than that of the age 1 fish.  
 
In order to monitor the departure of all the ages from the reference mean spatial organisation, 
the multivariate distance dmul was calculated (fig. 5.11.2): in each year the distance between 
the age reference point (labelled) and the current year’s point (black dot) was calculated and 
summed over the ages. Ages 4 and 5 show some elongation in the direction of departure from 
their reference, meaning that these ages tend to show a systematic change, namely a 
reduction in area occupied and a more northerly centre of gravity. This is quantified by the 
multivariate distance on which a statistical monitoring scheme could be applied. 
 
 

 d = 0.5 

 A1 

 A2 

 A3 

 A4 

 A5  A6 

PC1 PC2
PositiveArea 12+|0- 0+|16-
Inertia 12+|2- 1+|2-
Anisotropy 0+|2- 15+|0-
xcg 0+|17- 4+|4-
ycg 13+|0- 15+|0-
MicrostructureI 1+|11- 3+|3-
EquivalentArea 12+|0- 1+|2-
SpreadingArea 18+|0- 0+|7-  

 
Figure 5.11.1. Left: MFA representation of each age in each year (points) relatively to the age gravity centre. 

Right: Spatial indicators that are the most correlated to the first two principal axes 
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Figure 5.11.2. Monitoring North Sea cod in the sub-space of the two first principal MFA axes using the spatial 

indicators (Fisboat Table 1) : time series of the multivariate distance representing the deviation of the stock 
from its reference spatial distribution all ages considered. 
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5.4.3 Min/Max autocorrelation factors (MAFs) and time continuity 
Woillez M., Rivoirard J. 
Centre de Géostatistique, Armines/Ecole des Mines de Paris,  
Fontainebleau, France. 

What are MAFs? 
Min/max autocorrelation factors (MAFs) are a multivariate statistical method, having 
similarities with the classical Principal Components of PCA when analyzing repeated values 
taken by a set of variables. When applied to a time series, the MAFs allow the set of initial 
variables to be decomposed into factors, the autocorrelation of which decreases from the first 
factors to the last ones (or more generally, the variogram – half variance of increments – of 
which increases from the first factors to the last ones). Hence the very first factors extract the 
part of the variables which is the most continuous in time.  A recent application of MAFs in a 
fishery context was reported by Erzini et al. (2005). 
 
Some details are now provided, beginning with PCs. The PCs are linear combinations of the 
original variables, each of them explaining a decreasing part of the variability present in the 
values (these values can be seen as a cloud of points in the space having the initial variables 
as coordinates; the cloud is centered on the means of the variables, and we are interested in 
the variability of the cloud around its center, which corresponds to the centered variables). 
The PCs are uncorrelated with each other. The 1st component explains the highest part of the 
variability (it corresponds to the direction of maximal variability of the cloud). The 2nd 
component explains the second highest part of the variability, while being uncorrelated to the 
1st one (it corresponds to the direction of maximal variability of the cloud, while being 
orthogonal to the first direction), and so on. Then the set of variables can be decomposed and 
represented by these uncorrelated PCs, and they can be summarized by selecting the often 
few PCs that explain most of the variability of the cloud. 
 
Note that the PCs depend on the magnitude of the values taken by the different variables, and 
then on the unit used for each of them. Because the different variables may be of different 
nature, with different and conventional units, PCA is very often performed on the normed 
variables (i.e. having the variance of each variable set to 1). 
 
PCA is well suited to the case where the repeated values of the variables are independent. In 
case of repetition in time (time series) or in space, the PCs are uncorrelated with each other at 
the same time (or location), but may be correlated between different times (or locations), 
making the representation of the variables by the factors (the PCs) less appropriate. 
 
The MAFs, which are also linear combinations of the original variables, and have a variance 
of 1, offer a better representation of variables distributed in time or space: in addition to 
being uncorrelated with each other at the same time (or location), they are uncorrelated with 
each other for a given time (or space) lag (taken equal to the sampling lag in practice). 
Moreover they are computed with the aim of: (1) presenting the highest autocorrelation (or 
smallest variogram) at this lag for the 1st MAF; (2) then presenting the second highest 
autocorrelation at this lag, while being uncorrelated with the 1st MAF, for the 2nd MAF. Etc. 
Hence, in a time series, the MAFs offer a way to build the combinations of variables which 
present the maximal continuity in time (as measured at the lag) for the first MAFs, and the 
minimal continuity for the last MAFs.  
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Note that the MAFs depend on the chosen computation lag and may be correlated with each 
other for other lags. Note also that the MAFs do not depend on a possible normalisation of 
the initial variables.  
 
From a technical point of view, the MAFs are the solution of a generalized eigenvalues 
problem. This can be simplified into a simple eigenvalues system in the case where the 
variables are uncorrelated with each other at the same time (or location). Hence MAFs can be 
obtained by solving two simple eigenvalue systems: one to transform the initial variables into 
PCs, the other to obtain the MAFs from the increments of PCs at the computational lag (by 
maximizing/minimizing the variance of increments, i.e. minimizing/maximizing the 
autocorrelation). 

The MAFs in Fisboat 
In Fisboat (work package WP2A), a set of spatial indices were selected to represent a target 
spatial population over its time series. The estimated indices presented notable variations in 
time. These may have been due to actual variations but also to various errors. MAFs can be 
used to extract from the set of indices the very first factors, that present the maximal 
continuity in time, and that can be thought to be used for a follow-up of the population in 
time. 
 
Note: Here the continuity in time is measured at the lag of the time series: for instance a lag 
of 1 year if there is a survey every year, or the varying lag between successive surveys if 
there are gaps. 

The interpretation of the MAFs 
The very first MAFs (typically MAF1 and 2) allow us to extract trends in the multivariate 
time series of a set of indices. A jump upwards or downwards in the trends can be interpreted 
as a change in the spatial pattern of the considered age or functional group. Loadings informs 
us about the contribution of each index in the observed trends. Such an index can be used in 
an indicator approach to qualify a component of stock status (e.g. the spatial component). 
Moreover, correlation and delayed correlations allow us to put in relation MAFs and the 
abundance. 

The limits of the MAFs 
The number of MAFs cannot exceed the number of variables, nor the number of year 
increments (number of sampled years - 1). If the number of variables tends to be larger than 
the number of sampled years, the MAF n° i (i = 1, 2...) tends to have a period (number of 
years - 1)*2/i. In particular there will be evidence of a high continuity with period (number of  
years -1)*2 for MAF1, (number of years -1) for MAF2, etc, whatever the data, which may 
not be significant outside this series e.g. for additional years.  
 
To prevent such an overfitting to the very detailed values of the variables, and so to increase 
the significance of the MAFs, these are computed while adding a repeated random noise to 
the variables. The noise, which is function of the number of variables and years, vanishes 
when the time series is longer. 

Software 
An R script has been written, MAF_noise_script_WP5.R, in which the solution of MAFs is 
obtained from a double call to the PCA standard routine prcomp(). In the first call, PCs are 
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determined from the initial variables. In the second call, MAFs are computed from the 
increments of the PCs at the time lag.  
 
MAFs are computed for each of 100 realizations where a random noise is added to the 
centered and normed indices. The random noise follows a Gaussian distribution with mean 0 
and variance 0.1 * (nb.indices / (nb.years - 1)). For each resulting MAF, the 100 values of the 
loading of each index are available. Their distribution is symmetric. The median of the 
loading values (which is more robust than the mean) is used to determine the median MAFs 
profile. 
 
The MAFs that present the lowest variogram (half variance of increments) at the lag are 
retained finally. By default the two first MAFs are retained. (Note: since each MAF has a 
variance of 1, it can be shown that a small value for the variogram at short time lags is 
compensated by some large values at larger time lags. This explains the large variogram 
values at large time lags that can be found for the first MAFs). 

Output per age or functional group for a target spatial population: 
For each retained MAF, coming from the 100 realizations: 

• the median MAF time series; 
• the median MAF variogram; 
• the contribution (median of the loading coefficients) of each initial index into the 

median MAF. 
 
For each retained MAF: 

• the median MAF time series; 
• the times series of the log of the abundance; 
• the regression between the median MAF and the log of the abundance; 
• the delayed correlation between the median MAF and the log of the abundance. 

Important remark on the sign of MAFs: 
Like a PC, a MAF is equivalent to its opposite (= the MAF with changed sign, that would be 
obtained by changing the sign of each coefficient of its linear combination), since the unit 
variance and the variogram at the computation lag would be unchanged. Then a MAF that 
would be monotonic over a time series can indifferently appear to be increasing as well as 
decreasing. Similarly a MAF with an extremum in the middle of a time series could 
indifferently present a maximum or a minimum. 
 

References 
Switzer, P. and Green, A. A. 1984. Min/max autocorrelation factors for multivariate spatial 
imaging. Technical report no 6, Department of Statistics, Stanford University, 14 p. 
 
Erzini, K., Inejih, C.A.O. and Stobberup, K.A. (2005)  An application of two techniques for 
the analysis of short, multivariate non-stationary time-series of Mauritanian trawl survey 
data.  ICES Journal of Marine Science 62, 353-359. 



5. METHODS 

 129

5.5 Diagnosing stock status from indicator series.  

5.5.1 Combining trend signals using a cause-effects table 
Verena M. Trenkel, Marie-Joëlle Rochet and Benoît Mesnil 
Ifremer, Nantes, France 

Introduction 
This method provides guidance for an interpretation of time trends in indicators of the 
biological status of a stock derived from survey data (Gangl and Pereira 2003; Rochet and 
Trenkel 2003; Ault et al. 2005), and indicators of fishing pressure derived from knowledge of 
the fishery. Trends are interpreted relative to a past reference period.  The aim is to estimate 
the current state of a stock of interest with respect to management objectives.  A fuller 
account of the method together with a practical example of its application is given by Trenkel 
et al. (2007). 

Method 
At the preliminary stage, managers define operational objectives, for example, to obtain 
landings at a certain level, or individuals of a certain average size.  Meanwhile, scientists and 
stakeholders decide upon a suite of indicators suitable for monitoring the stock and the 
fishery, possibly using the multi-stage framework proposed by Rice and Rochet (2005). 
Secondly, scientists examine estimated values of the selected indicators together with reports 
of any other studies that pertain to the stock at some time in the past, called the reference 
state, most probably the starting year of a survey time series.  They then categorise the stock 
as having been either ‘satisfactory’ or ‘unsatisfactory’ for each indicator at that time.  
Thirdly, changes in indicator values after this reference time are estimated, interpreted, and 
combined into a diagnostic that highlights possible causes of the changes observed.  Finally, 
this diagnostic is considered with the managment objectives, indicators of fishing pressure, 
and past experience of managing the fishery in order to decide appropriate managerial 
actions. 
  
In more detail, having selected a suite of suitable indicators, there are several steps: 

1. Select the reference time and calculate time series of indicators. 
2. Determine time trends and status for each indicator in the current year. 
3. Evaluate any other relevant information and combine the results of different 

indicators to provide an interpretation of the changes observed. 
4. Agree a final diagnostic, including possible causes. 
5. Determine trends in fishing pressure and propose appropriate management actions in 

the light of the diagnosis and stated management objectives. 
 
For step 2, time trends in population indices from the reference year to the current year allow  
the current population dynamics to be assessed with respect to the reference situation. 
Uncertainty and natural variability in the survey data are accommodated through a hypothesis 
testing framework. A hypothesis test involves two risks of error, the type-I error of detecting 
a trend when none occurs, and the type-II error of not detecting a real trend. Whereas the α-
level of the type-I error can be selected, the probability of type-II errors is generally not 
known, but it increases as the α-level decreases. Clearly there is a trade-off here between the 
type of error that is to be most avoided, so the selection of α-levels in hypothesis tests for 
time trends is a task for managers of the fishery. Time trends over the whole series provide 
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estimates of longer term changes while trends over a more restricted number of years can 
inform on recent changes. Generally at least five years of data are required to be able to 
detect linear trends, in many cases, however, much longer series (>20 years) are necessary 
due to the high uncertainty and large random inter-annual variations in population indices 
(Nicholson and Jennings, 2004). The choice of the management time scale is clearly a 
decision for managers. Even with a multi-annual approach it is desirable to detect drastic 
changes in order to take rapid measures if necessary. For this, a choice of methods is 
available, as described elsewhere in this FISBOAT manual, e.g. CUSUM charts (Mesnil and 
Petitgas), and the method of second derivatives (Trenkel). For certain indicators reference 
points may exist, for example Z* for the total mortality rate (Die and Caddy, 1997) which 
can be used to evaluate directly the status of an index in the current year. The final aim of 
step 2 is to determine the direction of the most recent changes for each indicator, i.e. 
decreasing, stable or increasing. 
 
Step 3 involves combining the results of several population indices. One well known method 
is the traffic light approach put forward by Caddy and others (Halliday et al. 2001; Caddy 
2002). Depending on how many indicators are red, i.e. in an undesirable state, the overall 
assessment is set. For this approach the different indices take equal weights but they could 
just as well be weighted based on some a priori criteria. Rochet et al. (2005)proposed an 
alternative approach based on combining population and community indicators according to 
their biological meaning.   Step 3 should also involve consideration of biological information 
additional to that provided by the indicator series (e.g. recruitment estimates, mean weight-
at-age) in order to clarify the likely causes of the changes observed.  Investigation of time-
trends in indicators for fishing pressure (Piet et al. 2007) such as days-at-sea, fishing 
mortality, and quantities landed and discarded will allow corroboration of whether changes in 
fishing pressure could have been the major cause, before stating the final diagnosis (step 4). 
 
The last step is to propose possible managerial measures linked to the diagnoses.  The 
proposals should depend on whether the reference state was considered satisfactory or not, 
and whether fishing pressure increased since the reference year.  The advice provides the 
direction of appropriate measures rather than prescribing them in quantitative terms, leaving 
the final decision to managers who should be guided by past experience. 

Example 
Here we apply this approach to an imaginary case of five population indicators: total 
mortality (Z), log-transformed abundance ln N, mean length L , and length quartiles L25% and 
L75% .   Table 5.4.1 shows the increasing or decreasing effects (shown with arrows) that the 
most relevant factors are expected to have on each indicator. We assume that its long term 
time trend from the reference year to the current year has been categorised as either 
increasing, stable or decreasing. Using the method proposed by Trenkel (2006), the sign of 
the recent time trend for ln N is also obtained. Table 5.4.2 is then used to determine which 
time trends, short or long term, are used in table 5.4.1.  Depending on agreement or not 
between long and short term trends in ln N, the estimated category of the short or long term 
trends determines which trend is used. The latter case occurs if a recent increase in ln N can 
be explained by recent management measures that reduce fishing while the long term trend is 
decreasing. Note that table 5.4.1 only considers single causes and not the expected effects of 
combined causes such as reduced recruitment and increased fishing. In certain cases 
additional information such as recruitment estimates, should be sought in order to clarify the 
causes of the observed changes. Thus, in the proposed approach, biological knowledge is 



5. METHODS 

 131

used to point at the possible causes behind the observed changes, at least as far as being able 
to say whether increased fishing pressure could have contributed.  
 
The last step consists of proposing possible managerial measures.  The last column of table 
5.4.1 makes suggestions for mitigating measures based on whether the reference state is 
considered to be impacted by fishing (1), or satisfactory (2).  As the diagnosis is qualitative, 
so are the managerial measures. The direction rather than a prescribed amount of treatment is 
proposed. The quantitative decision is left to the managers. The adaptive management 
approach advocated in the 1980’s by Walters (1986) seems a natural choice for implementing 
qualitative management advice, with a careful monitoring of response to the chosen policy 
being fed into the process for the next time step. The listed measures are by no means 
exhaustive and are only intended to give a flavour of the kind of advice that could be 
proposed.  
 

Table 5.4.1: Expected effects of different causes on selected indicators and possible mitigation measures for 
counterbalancing changes. Δ stands for change, ⎯ for no effect,  for increasing and  for decreasing. 

Population indicators: Z = total mortality, ln-N = log-transformed total abundance, Lbar = mean length, L25% and 
L75% = length distribution quartiles. 

 
Cause Z ln N L-bar 

 
L25% L75% Mitigation measure 

1 = impacted reference state 
2 = satisfactory reference state 

 fishing mortality 
 
 

   ⎯  1 & 2 : −ΔF: reduction in overall 
fishing mortality 

 fishing mortality 
 
 

   ⎯  1: status quo 
2: +ΔF allowed  

 recruitment 
 
 

⎯    ⎯ 1: status quo 
2: +ΔTAC: increase in TAC   

 recruitment 
 
 

⎯    ⎯ 1 & 2: −ΔTAC: reduction in TAC  

Faster growth ⎯ ⎯  ⎯  1: status quo 
2 : Δselection pattern: decrease 
selectivity to smaller sizes 

Slower growth 
 
 

⎯ ⎯  ⎯  1 & 2: Δselection pattern: increase 
selectivity to larger sizes 

Larger fish caught (Δ fishing  
area, stock distribution or 
gear) 

   ⎯  1: status quo  
2: Δselection pattern: decrease 
selectivity to smaller sizes 

Smaller fish caught (Δ fishing  
area, stock distribution or 
gear) 
 

    ⎯ 1 & 2: Δselection pattern: increase 
selectivity to larger sizes 
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Table 5.4.2. Table for determining whether 'long term' or 'recent term' trends are used in table 5.4.1.  If recent 
time trends are used, the reference state at the beginning of the recent period needs to be used! 

 
 

Recent trend in ln N Long term 
trend in ln N  ⎯  

 long term long term recent term 

⎯ long term recent term 

 

if recent management 
measures intended to  
decrease fishing: continue 
else: as for long term  

long term long term 
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5.5.2  A 'traffic light' procedure based on Cusum out-of-control 
tables. 
Pierre Petitgas, 
IFREMER, Nantes, 
France  

Introduction 
Usually, more than one indicator is used to assess the status of a fish stock.  The important 
question then arises of how to combine the various results into a single assessment. One 
simple, illustrative way of doing so is to use a 'traffic light approach'  (Caddy et al., 2005).  
An alternative approach is that of multivariate statistical process control. Both are 
complementary as the CUSUM diagnostic table with all indicators may assist interpretation 
of multivariate alarm signals.  Part II (section 5.9) of this 2-part section illustrates the 
multivariate statistical approach. 

Example 
To illustrate, a CUSUM procedure (see Mesnil and Petitgas elsewhere in this manual) was 
applied separately to time-series of each of several attributes (indicators) for the North Sea 
cod stock studied under FISBOAT and available at http://www.ifremer.fr/drvecohal/fisboat/.  
The CUSUM procedure comprises three steps (Hawkins and Olwell, 1997; Montgomery, 
2005). First, a reference period is defined as a period when the health of the stock was 
considered acceptable (in-control).  This serves to estimate the in-control reference mean and 
variance for each indicator. The same reference period was applied to all indicators with the 
results shown in table 5.8.1. Second, the CUSUM was tuned for each indicator to signal 
important deviations from the reference mean in years outside the reference period. The 
tuning of the CUSUM results in statistically defining the false alarm rate, and the no alarm 
rate associated with the in-control limits that are set to enclose acceptable deviations from the 
reference mean. The application of the CUSUM to each indicator for the cod stock resulted 
in an array of deviations from the reference mean vector expressed in standard deviation 
units.  This is the CUSUM diagnostic table shown in table 5.8.2. Each column of the array 
corresponds to each indicator time series of deviations.  Because the deviations being 
expressed in units of standard deviation, comparisons between indicators are immediate. 
Setting the non-alerting deviations to zero, the diagnostic CUSUM table provides the 
quantitative values of the deviations from the reference means with a + or – sign which 
trigger alarm signals. Clearly, in some years only a small number of indicators signal alarms, 
some perhaps with high deviations, whereas, in other years, many will signal. Here, we used 
expert judgement in assigning each year as 'in-control' or 'out-of-control' based on which 
indicator signalled alarm and how many of them there were (table 5.8.2).  Cells in the table 
may be coloured red, orange, or green, as for traffic lights, to show at a glance the perceived 
seriousness of the state indicated. 
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Table 5.8.1: Parameters of the CUSUM control scheme for North Sea cod for the biological indicators. 
Reference period is 1985-1994. Parameters are: mu, sd: mean and standard deviation in reference period; k: 
allowance in sd units; h: decision interval in sd units; ic.arl (years): in-control ARL (average run length to a 
false alarm) also noted ARL(0); ic.rl.25 (years): RL value at the first quartile of the RL distribution; oc.arl 
(years): out-of-control ARL (average run length to signal real change) also noted ARL(2k). Indicators are: 

Survey index: abundance index for ages 1 to 6; Recruit index: abundance at age 2; Lbar: average length in the 
population; L25: length value of the first quartile; L75: length value of the third quartile; L50 maturity: length 

value at which 50% of the population is mature; Z: apparent total mortality.  

 
 

 Survey 
index 

Recruit 
index 

Lbar L25 L75 L50 
maturity 

Z 

mu 19.12 18.00 34.77 20.69 41.70 65.44 1.12 
sd 0.26 0.77 4.80 5.16 6.45 5.24 0.44 
k 1.3 0.9 1.2 0.9 0.8 1.1 1.0 
h 1.0 1.0 1.0 1.0 1.2 1.1 1.0 

ic.arl 79.3 27.5 60.0 27.5 30.0 56.2 35.3 
ic.rl.25 23.0 8.0 17.0 8.0 9.0 16.0 10.0 
oc.arl 1.5 1.9 1.6 1.9 2.3 1.8 1.8 
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Table 5.8.2: CUSUM diagnostics table for North Sea cod using biological population indicators. Values are the 
deviation from the reference mean for each indicator in standard deviation units. Reference period is 1985-

1994. The procedure signals an alarm from 1999.  Indicators are: Survey index: abundance index for ages 1 to 
6; Recruit index: abundance at age 2; Lbar: average length in the population; L25: length value of the first 

quartile; L75: length value of the third quartile; L50 maturity: length value at which 50% of the population is 
mature; Z: apparent total mortality.  

 
Year Survey 

Index 
Recruit 
index 

Lbar L25 L75 L50 
mat-urity 

Z diag-nostics

1985 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1986 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1987 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1988 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1989 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1990 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1991 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1992 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1993 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1994 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ref 
1995 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
1996 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
1997 0.00 0.00 -1.84 -1.03 -2.21 -1.85 0.00  
1998 0.00 0.00 0.00 0.00 -2.00 -3.44 0.00  
1999 -1.27 -1.30 0.00 0.00 0.00 -7.36 0.00 alarm 
2000 -1.65 0.00 0.00 0.00 0.00 -9.34 0.00 alarm 
2001 -3.04 0.00 0.00 0.00 0.00 -9.84 0.00 alarm 
2002 -3.96 0.00 0.00 0.00 0.00 -12.78 0.00 alarm 
2003 -7.48 0.00 0.00 0.00 0.00 -15.95 0.00 alarm 
2004 -10.50 -1.18 0.00 0.00 0.00 -19.33 0.00 alarm 
2005 -14.97 -2.02 0.00 0.00 1.23 -23.10  alarm 

 

References 
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traffic light procedure for monitoring and forecasting in the Gulf of St. Lawrence fishery for 
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Montgomery, D. 2005. Introduction to statistical quality control. Wiley, New York. 5th 
Edition. 
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5.5.3 A multivariate statistical procedure. 
Pierre Petitgas, 
IFREMER, Nantes, 
France  

Introduction 
Part I of this presentation (see section 5.8) illustrated the 'traffic light approach' for 
combining results from time-series of several indicators into a single assessment of a fish 
stock.  A complimentary approach is to use multivariate statistical methods.  An illustrative 
example is given here.  More detail on the PCA and MFA approaches discussed can be found 
in sections 5.10 and 5.11 of this manual, respectively. 
 
Multivariate statistical process control methods use the relationships existing among control 
variables to prevent having to deal with false alarms in the many individual control charts. 
Thus multivariate process control methods are potentially more efficient than control 
methods based on the analysis of a collection of univariate charts (e.g., Hawkins and Olwell, 
1997). Various multivariate control methods are available. Hotelling’s T2 statistic (Hotelling, 
1947) is the analogue in the multivariate case of the Shewart chart in the univariate case (e.g., 
Hawkins and Olwell, 1997). It is best suited to detect large shifts in the mean as it uses the 
current sample only at each time step. To detect rapidly small shifts in the mean, consecutive 
samples need to be considered for which multivariate CUSUM methods (Crozier, 1988) and 
multivariate exponentially weighted moving average (EWMA) methods (Lowry et al., 1992) 
have been developed. Scranton et al. (1996) used multivariate EWMA on a reduced number 
of principal components with increased shift detection capability. In environmental 
monitoring, Manly and MacKenzie (2000) made use of Principal Component Analysis (PCA) 
to project multivariate observations in a factorial space and assess whether they were inside 
or outside the area within which the process could be considered in control.  

Example 
To illustrate a multivariate approach, the same CUSUM results for North Sea cod discussed 
previously in relation to the Traffic Light approach (section 5.8) will be used with the 
addition of parallel time series for some spatial indicators. The approach considered is 
inspired by the PCA procedure of Manly and MacKenzie (2000).  First, the centre of gravity 
in factorial space was estimated for the in-control reference years. Next, the distance in 
factorial space of the observation in each year to that centre of gravity was computed and a 
new time series constructed from them. Then a CUSUM procedure was applied to that 
distance. PCA-based distances were applied to the biological (non-spatial) indices, while, for 
the spatial indices, MFA-based distances (see section 5.11) were used. Evolution of the stock 
can then be summarised with two distances, one for the spatial and one for the non-spatial 
indicators. A traffic light type table with two columns (one for each distance) of CUSUM 
deviations from the in-control domain represents simply the multivariate process control 
scheme for all the attributes of the stock (tables 5.9.1, 5.9.2).  
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Table 5.9.1: Parameters of the CUSUM control scheme for North Sea cod for the multivariate indicators. 
Reference period is 1985-1994. Parameters are: mu, sd: mean and standard deviation in reference period; k: 
allowance in sd units; h: decision interval in sd units; ic.arl (years): in-control ARL (average run length to a 
false alarm) also noted ARL(0); ic.rl.25 (years): RL value at the first quartile of the RL distribution; oc.arl 
(years): out-of-control ARL (average run length to signal real change) also noted ARL(2k). Indicators are: 

Spatial.mul.mfa: MFA-based multivariate distance for the spatial indices; Biol.mul.pca: PCA-based multivariate 
distance for the biological indices. 

 
Parameter Spatial.mul.mfa 

 
Biol.mul.pca 

mu 1.35 1.67 
sd 0.23 0.76 
k 0.9 1.5 
h 1.2 1.0 

ic.arl 39.2 142.2 
ic.rl.25 11.0 41.0 
oc.arl 2.1 1.4 
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Table 5.9.2: CUSUM diagnostics table for North Sea cod using multivariate indicators, one for all the spatial 
indices and the other for all the biological indices. Values are the deviation from the reference mean for each 

indicator in standard deviation units. Reference period is 1985-1994. The procedure signals an alarm from year 
2000.  Indicators are: Spatial.mul.mfa: MFA-based multivariate distance for the spatial indices; Biol.mul.pca: 

PCA-based multivariate distance for the biological indices.  

 
Year 

 
Spatial.mul.mfa Biol.mul.pca diagnostics 

1985 0.00 0.00 ref 
1986 0.00 0.00 ref 
1987 0.00 0.00 ref 
1988 0.00 0.00 ref 
1989 0.00 0.00 ref 
1990 0.00 0.00 ref 
1991 0.00 0.00 ref 
1992 0.00 0.00 ref 
1993 0.00 0.00 ref 
1994 0.00 0.00 ref 
1995 1.40 0.00  
1996 0.00 0.00  
1997 0.00 1.46  
1998 0.00 0.00  
1999 0.00 3.46  
2000 1.77 3.80 alarm 
2001 2.66 4.06 alarm 
2002 2.00 4.63 alarm 
2003 1.69 8.36 alarm 
2004 2.42 11.96 alarm 
2005 2.85 17.13 alarm 

 

References 
Crosier, R. 1988. Multivariate Generalizations of Cumulative Sum Quality-Control Schemes. 
Technometrics, 30: 291-303. 
 
Hawkins, D. and Olwell, D. 1997. Cumulative Sum Charts and Charting for Quality 
Improvement. Springer Verlag, New York. 
  
Hotelling, H. 1947. Multivariate Quality Control. In: Techniques of Statistical Analysis, Eds. 
C. Eisenhart, M. Hastay and W. Wallis, New York, McGraw-Hill, pp.111-184 
 
Lowry, C., Woodall, W., Champ, C., Rigdon, S. 1992. A Multivariate Exponentially 
Weighted Moving Average Control Chart. Technometrics, 34: 46-53. 
 
Manly, B. and MacKenzie, D. 2000. A cumulative sum type of methods for environmental 
monitoring. Environmetrics, 11: 151-166. 
 
Scranton, R., Runger, G., Keats, B. and Montegomery, D. 1996. Efficient shift detection 
using multivariate exponentially weighted moving average control charts and principal 
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Appendix 1 

Format for documenting indicators 
The format adopted here for presenting indicators is derived from  
Halliday, R.G. and Mohn, R. (2001).  Proceedings of the Fisheries Management Studies WG, 
8-11 January 2001.  Canadian Science Advisory Secretariat, Proceedings Series 2001/08 
(Appendix 5, pp. 45-48). 
 
Description of indicators/indices 
 
INDEX : descriptive name + acronym 
Description : short description of what it is (and for case studies in second stage, survey in which it is 
measured, e.g. "mean length of NEA cod caught during winter Barents Sea surveys") 
 
Stock attribute :  
• attribute(s) that the indicator is deemed to reflect (e.g. abundance, productivity, recruitment, 

mortality, ecosystem, …) 
 
Derivation : 
• document briefly how the index is derived from raw data for each station, and then integrated for 

the whole survey year (+ ref. published manuals for details). 
• and how variance of total index is obtained 
 
Reference points : 
• bases for setting the RPs (as target, limit or trigger) 
• alternative choices and their rationale 
 
Interpretability : 
• how does the indicator reflect stock status or the identified attribute? 
• what caveats exist regarding interpretation? (e.g., whole stock vs. population in survey area, if 

they differ) 
• processes involved in changes (is indicator's response specific?) 
 
Measurability : (keyword here is: confidence in estimates of the indicator) 
• statistical properties of estimator (variability, bias, skewness, …) 
• transformations required before use 
• alternative formulations for the same estimators 
• alternative estimators of same indicators ; pros & cons 
 
Sensitivity : 
• how rapidly & accurately does indicator respond to changes in stock status? 
• does natural variability likely masks real changes? 
 
Review of performance : 
• performance of the indicator in hindsight, to infer stock status 
• document the adequacy of the indicator, its estimator and its RPs (or problems encountered for 

the specific case study) 
 
References : 
(e.g., for case studies, references to published manuals of procedures, articles in which the indicator 
has been applied in advisory context, …) 
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